loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集
题目描述
给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选取出开区间集合 S⊆I S \subseteq IS⊆I,使得在实直线 L LL 的任何一点 x xx,S SS 中包含点 x xx 的开区间个数不超过 k kk。且 ∑z∈S∣z∣ \sum\limits_{z \in S} | z |z∈S∑∣z∣ 达到最大。这样的集合 S SS 称为开区间集合 I II 的最长 k kk 可重区间集。∑z∈S∣z∣ \sum\limits_{z \in S} | z |z∈S∑∣z∣ 称为最长 k kk 可重区间集的长度。
对于给定的开区间集合 I II 和正整数 k kk,计算开区间集合 I II 的最长 k kk 可重区间集的长度。
输入格式
文件的第 1 11 行有 2 22 个正整数 n nn 和 k kk,分别表示开区间的个数和开区间的可重迭数。
接下来的 n nn 行,每行有 2 22 个整数 li l_ili 和 ri r_iri,表示开区间的左右端点坐标,注意可能有 li>ri l_i > r_ili>ri,此时请将其交换。
输出格式
输出最长 k kk 可重区间集的长度。
样例
样例输入
4 2
1 7
6 8
7 10
9 13
样例输出
15
数据范围与提示
1≤n≤500,1≤k≤3 1 \leq n \leq 500, 1 \leq k \leq 31≤n≤500,1≤k≤3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define maxn 1010
#define INF 1000000000
using namespace std;
int n,k,mp[maxn],m,l[maxn],r[maxn],S,T,head[maxn],num=,dis[maxn],ans;
bool vis[maxn];
struct node{int to,pre,v,w;}e[];
void Insert(int from,int to,int v,int w){
e[++num].to=to;e[num].v=v;e[num].w=w;e[num].pre=head[from];head[from]=num;
e[++num].to=from;e[num].v=;e[num].w=-w;e[num].pre=head[to];head[to]=num;
}
int find(int x){return lower_bound(mp+,mp+m+,x)-mp;}
void build(){
S=;T=m+;
Insert(S,,k,);Insert(m,T,k,);
for(int i=;i<m;i++)Insert(i,i+,INF,);
for(int i=;i<=n;i++)Insert(find(l[i]),find(r[i]),,-r[i]+l[i]);
}
bool spfa(){
queue<int>q;
memset(vis,,sizeof(vis));
memset(dis,0x3f,sizeof(dis));
q.push(S);vis[S]=;dis[S]=;
while(!q.empty()){
int now=q.front();q.pop();vis[now]=;
for(int i=head[now];i;i=e[i].pre){
int to=e[i].to;
if(e[i].v>&&dis[to]>dis[now]+e[i].w){
dis[to]=dis[now]+e[i].w;
if(!vis[to]){vis[to]=;q.push(to);}
}
}
}
return dis[T]<INF;
}
int dinic(int x,int flow){
if(x==T||flow==)return flow;
int rest=flow;vis[x]=;
for(int i=head[x];i;i=e[i].pre){
int to=e[i].to;
if(dis[to]==dis[x]+e[i].w&&e[i].v>&&!vis[to]){
int delta=dinic(to,min(rest,e[i].v));
e[i].v-=delta;
e[i^].v+=delta;
rest-=delta;
ans+=e[i].w*delta;
}
}
vis[x]=;
return flow-rest;
}
void work(){
while(spfa()){
memset(vis,,sizeof(vis));
dinic(S,INF);
}
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
if(l[i]>r[i])swap(l[i],r[i]);
mp[++m]=l[i];mp[++m]=r[i];
}
sort(mp+,mp+m+);
m=unique(mp+,mp+m+)-mp-;
build();
work();
ans=-ans;
printf("%d",ans);
}
loj #6014. 「网络流 24 题」最长 k 可重区间集的更多相关文章
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- *LOJ#6227. 「网络流 24 题」最长k可重线段集问题
$n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用( ...
- 「网络流 24 题」最长 k 可重区间集
给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- 网络流24题之最长k可重区间集问题
对于每个点向后一个点连流量为k费用为0的边 对每一区间连l到r流量为1费用为r-l的边 然后最小费用最大流,输出取反 一开始写的r-l+1错了半天... By:大奕哥 #include<bits ...
随机推荐
- php学习之if
<html> <head> <title>xxx</title> <style> #tian{ color:blue; float:left ...
- 从javascript的循环问题来看待闭包本质
第一次接触这个问题还是在我刚开始学js的时候,当时就是一头雾水,时隔一年多了,突然又想起了这个问题,在这个春气盎然的周末,我就坐下来研究下并把结果和大家分享下: 先看代码:demo.html < ...
- django 基于正则表达式的url
方式一: urls.py from mytest import views urlpatterns = [ url(r'^index-(\d+)-(\d+).html', views.Index.as ...
- php中不借助IDE快速定位行数或者方法定义的文件和位置
借助了ReflectionMethod的一些特性,可以快速获得函数或者方法是在哪个文件的什么位置定义的,对于调试没有文档的程序来说很有帮助! ---------------- function fun ...
- Eclipse导入MyEclipse项目遇到问题解答
导入一个其他IDE中的项目,第一一定要想到:不同IDE中的配置文件问题: 比如:tomcat启动寻找项目的根目录问题,Eclipse的webContext,Myeclipse的是Webroot文件夹, ...
- C语言代码里不能用goto?
当我学C语言时,老师整天告诉我:"不要使用goto, 这是一个坏习惯, 这种写法很烂,而且很危险!"等等. 但是为什么那么多内核程序员那么喜欢用goto呢? 在这段linux内核 ...
- c语言练习 二维数组 年平均降水量 月平均降水量
#define YEARS 5#define MONTHES 12 int main(void) { const float rain[YEARS][MONTHES] = { {4.3,4.3,4.3 ...
- Swing自定义JScrollPane的滚动条设置,重写BasicScrollBarUI方法
Swing自定义JScrollPane的滚动条设置,重写BasicScrollBarUI方法 摘自:https://blog.csdn.net/qq_31635851/article/details/ ...
- C语言多线程
http://www.cnblogs.com/lixiaohui-ambition/archive/2012/07/26/2610336.html
- python,itertools模块
itertools模块的使用: # coding=utf-8 """ itertools模块 """ import itertools im ...