40个你可能不知道的Python的特点和技巧
1、拆箱
>>> a, b, c = 1, 2, 3>>> a, b, c(1, 2, 3)>>> a, b, c = [1, 2, 3]>>> a, b, c(1, 2, 3)>>> a, b, c = (2 * i + 1 for i in range(3))>>> a, b, c(1, 3, 5)>>> a, (b, c), d = [1, (2, 3), 4]>>> a1>>> b2>>> c3>>> d4 |
2、使用拆箱进行变量交换
>>> a, b = 1, 2>>> a, b = b, a>>> a, b(2, 1) |
3、扩展的拆箱(Python 3支持)
>>> a, *b, c = [1, 2, 3, 4, 5]>>> a1>>> b[2, 3, 4]>>> c5 |
4、负数索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-1]10>>> a[-3]8 |
5、列表切片(a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[2:8][2, 3, 4, 5, 6, 7] |
6、负数索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-4:-2][7, 8] |
7、带步数的列表切片(a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::2][0, 2, 4, 6, 8, 10]>>> a[::3][0, 3, 6, 9]>>> a[2:8:2][2, 4, 6] |
8、负数步数的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::-1][10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]>>> a[::-2][10, 8, 6, 4, 2, 0] |
9、列表切片赋值
>>> a = [1, 2, 3, 4, 5]>>> a[2:3] = [0, 0]>>> a[1, 2, 0, 0, 4, 5]>>> a[1:1] = [8, 9]>>> a[1, 8, 9, 2, 0, 0, 4, 5]>>> a[1:-1] = []>>> a[1, 5] |
10、切片命名(slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]>>> LASTTHREE = slice(-3, None)>>> LASTTHREEslice(-3, None, None)>>> a[LASTTHREE][3, 4, 5] |
11、遍历列表索引和值(enumerate)
>>> a = ["Hello", "world", "!"]>>> for i, x in enumerate(a):... print "{}: {}".format(i, x)...0: Hello1: world2: ! |
12、遍历字典的KEY和VALUE(dict.iteritems)
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}>>> for k, v in m.iteritems():... print "{}: {}".format(k, v)...a: 1c: 3b: 2d: 4# 注意:Python 3中要使用dict.items |
13、压缩 & 解压列表和可遍历对象
>>> a = [1, 2, 3]>>> b = ["a", "b", "c"]>>> z = zip(a, b)>>> z[(1, "a"), (2, "b"), (3, "c")]>>> zip(*z)[(1, 2, 3), ("a", "b", "c")] |
14、使用zip分组相邻列表项
>>> a = [1, 2, 3, 4, 5, 6]>>> # Using iterators>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)]>>> # Using slices>>> from itertools import islice>>> group_adjacent = lambda a, k: zip(*(islice(a, i, None, k) for i in range(k)))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)] |
15、使用zip & iterators实现推拉窗(n-grams)
>>> from itertools import islice>>> def n_grams(a, n):... z = (islice(a, i, None) for i in range(n))... return zip(*z)...>>> a = [1, 2, 3, 4, 5, 6]>>> n_grams(a, 3)[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]>>> n_grams(a, 2)[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]>>> n_grams(a, 4)[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)] |
16、使用zip反相字典对象
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}>>> m.items()[("a", 1), ("c", 3), ("b", 2), ("d", 4)]>>> zip(m.values(), m.keys())[(1, "a"), (3, "c"), (2, "b"), (4, "d")]>>> mi = dict(zip(m.values(), m.keys()))>>> mi{1: "a", 2: "b", 3: "c", 4: "d"} |
17、合并列表
>>> a = [[1, 2], [3, 4], [5, 6]]>>> list(itertools.chain.from_iterable(a))[1, 2, 3, 4, 5, 6]>>> sum(a, [])[1, 2, 3, 4, 5, 6]>>> [x for l in a for x in l][1, 2, 3, 4, 5, 6]>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]>>> [x for l1 in a for l2 in l1 for x in l2][1, 2, 3, 4, 5, 6, 7, 8]>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]>>> flatten(a)[1, 2, 3, 4, 5, 6, 7, 8]Note: according to Python"s documentation on sum, itertools.chain.from_iterable is the preferred method for this. |
18、生成器
>>> g = (x ** 2 for x in xrange(10))>>> next(g)0>>> next(g)1>>> next(g)4>>> next(g)9>>> sum(x ** 3 for x in xrange(10))2025>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)408 |
19、字典解析
>>> m = {x: x ** 2 for x in range(5)}>>> m{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}>>> m = {x: "A" + str(x) for x in range(10)}>>> m{0: "A0", 1: "A1", 2: "A2", 3: "A3", 4: "A4", 5: "A5", 6: "A6", 7: "A7", 8: "A8", 9: "A9"} |
20、使用字典解析反相字典对象
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}>>> m{"d": 4, "a": 1, "b": 2, "c": 3}>>> {v: k for k, v in m.items()}{1: "a", 2: "b", 3: "c", 4: "d"} |
21、命名的tuples(collections.namedtuple)
>>> Point = collections.namedtuple("Point", ["x", "y"])>>> p = Point(x=4.0, y=2.0)>>> pPoint(x=4.0, y=2.0)>>> p.x4.0>>> p.y2.0 |
22、继承命名tuples
>>> class Point(collections.namedtuple("PointBase", ["x", "y"])):... __slots__ = ()... def __add__(self, other):... return Point(x=self.x + other.x, y=self.y + other.y)...>>> p = Point(x=4.0, y=2.0)>>> q = Point(x=2.0, y=3.0)>>> p + qPoint(x=6.0, y=5.0) |
23、Set & Set运算
>>> A = {1, 2, 3, 3}>>> Aset([1, 2, 3])>>> B = {3, 4, 5, 6, 7}>>> Bset([3, 4, 5, 6, 7])>>> A | Bset([1, 2, 3, 4, 5, 6, 7])>>> A & Bset([3])>>> A - Bset([1, 2])>>> B - Aset([4, 5, 6, 7])>>> A ^ Bset([1, 2, 4, 5, 6, 7])>>> (A ^ B) == ((A - B) | (B - A))True |
24、Multisets运算(collections.Counter)
>>> A = collections.Counter([1, 2, 2])>>> B = collections.Counter([2, 2, 3])>>> ACounter({2: 2, 1: 1})>>> BCounter({2: 2, 3: 1})>>> A | BCounter({2: 2, 1: 1, 3: 1})>>> A & BCounter({2: 2})>>> A + BCounter({2: 4, 1: 1, 3: 1})>>> A - BCounter({1: 1})>>> B - ACounter({3: 1}) |
25、列表中出现最多的元素(collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])>>> ACounter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})>>> A.most_common(1)[(3, 4)]>>> A.most_common(3)[(3, 4), (1, 2), (2, 2)] |
26、双向队列(collections.deque)
>>> Q = collections.deque()>>> Q.append(1)>>> Q.appendleft(2)>>> Q.extend([3, 4])>>> Q.extendleft([5, 6])>>> Qdeque([6, 5, 2, 1, 3, 4])>>> Q.pop()4>>> Q.popleft()6>>> Qdeque([5, 2, 1, 3])>>> Q.rotate(3)>>> Qdeque([2, 1, 3, 5])>>> Q.rotate(-3)>>> Qdeque([5, 2, 1, 3]) |
27、限制长度的双向队列(collections.deque)
>>> last_three = collections.deque(maxlen=3)>>> for i in xrange(10):... last_three.append(i)... print ", ".join(str(x) for x in last_three)...00, 10, 1, 21, 2, 32, 3, 43, 4, 54, 5, 65, 6, 76, 7, 87, 8, 9 |
28、排序字典(collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))>>> print ", ".join(m.keys())1, 0, 3, 2, 5, 4, 7, 6, 9, 8>>> m = collections.OrderedDict((str(x), x) for x in range(10))>>> print ", ".join(m.keys())0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))>>> print ", ".join(m.keys())10, 9, 8, 7, 6, 5, 4, 3, 2, 1 |
29、默认字典(collections.defaultdict)
>>> m = dict()>>> m["a"]Traceback (most recent call last):File "<stdin>", line 1, in <module>KeyError: "a">>>>>> m = collections.defaultdict(int)>>> m["a"]0>>> m["b"]0>>> m = collections.defaultdict(str)>>> m["a"]"">>> m["b"] += "a">>> m["b"]"a">>> m = collections.defaultdict(lambda: "[default value]")>>> m["a"]"[default value]">>> m["b"]"[default value]" |
30、使用defaultdict代表tree
>>> import json>>> tree = lambda: collections.defaultdict(tree)>>> root = tree()>>> root["menu"]["id"] = "file">>> root["menu"]["value"] = "File">>> root["menu"]["menuitems"]["new"]["value"] = "New">>> root["menu"]["menuitems"]["new"]["onclick"] = "new();">>> root["menu"]["menuitems"]["open"]["value"] = "Open">>> root["menu"]["menuitems"]["open"]["onclick"] = "open();">>> root["menu"]["menuitems"]["close"]["value"] = "Close">>> root["menu"]["menuitems"]["close"]["onclick"] = "close();">>> print json.dumps(root, sort_keys=True, indent=4, separators=(",", ": ")){"menu": {"id": "file","menuitems": {"close": {"onclick": "close();","value": "Close"},"new": {"onclick": "new();","value": "New"},"open": {"onclick": "open();","value": "Open"}},"value": "File"}}# 查看更多:https://gist.github.com/hrldcpr/2012250 |
31、映射对象到唯一的计数数字(collections.defaultdict)
>>> import itertools, collections>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)>>> value_to_numeric_map["a"]0>>> value_to_numeric_map["b"]1>>> value_to_numeric_map["c"]2>>> value_to_numeric_map["a"]0>>> value_to_numeric_map["b"]1 |
32、最大 & 最小元素(heapq.nlargest and heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]>>> heapq.nsmallest(5, a)[3, 3, 5, 6, 8]>>> heapq.nlargest(5, a)[100, 100, 99, 98, 98] |
33、笛卡尔积(itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):(1, 4)(1, 5)(2, 4)(2, 5)(3, 4)(3, 5)>>> for p in itertools.product([0, 1], repeat=4):... print "".join(str(x) for x in p)...0000000100100011010001010110011110001001101010111100110111101111 |
34、组合(itertools.combinations and itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):... print "".join(str(x) for x in c)...123124125134135145234235245345>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):... print "".join(str(x) for x in c)...111213222333 |
35、排列(itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):... print "".join(str(x) for x in p)...123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321 |
36、链接可遍历对象(itertools.chain)
>>> a = [1, 2, 3, 4]>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):... print p...(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))... print subset...()(1,)(2,)(3,)(4,)(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)(1, 2, 3, 4) |
37、根据给定的KEY分组(itertools.groupby)
>>> from operator import itemgetter>>> import itertools>>> with open("contactlenses.csv", "r") as infile:... data = [line.strip().split(",") for line in infile]...>>> data = data[1:]>>> def print_data(rows):... print " ".join(" ".join("{: <16}".format(s) for s in row) for row in rows)...>>> print_data(data)young myope no reduced noneyoung myope no normal softyoung myope yes reduced noneyoung myope yes normal hardyoung hypermetrope no reduced noneyoung hypermetrope no normal softyoung hypermetrope yes reduced noneyoung hypermetrope yes normal hardpre-presbyopic myope no reduced nonepre-presbyopic myope no normal softpre-presbyopic myope yes reduced nonepre-presbyopic myope yes normal hardpre-presbyopic hypermetrope no reduced nonepre-presbyopic hypermetrope no normal softpre-presbyopic hypermetrope yes reduced nonepre-presbyopic hypermetrope yes normal nonepresbyopic myope no reduced nonepresbyopic myope no normal nonepresbyopic myope yes reduced nonepresbyopic myope yes normal hardpresbyopic hypermetrope no reduced nonepresbyopic hypermetrope no normal softpresbyopic hypermetrope yes reduced nonepresbyopic hypermetrope yes normal none>>> data.sort(key=itemgetter(-1))>>> for value, group in itertools.groupby(data, lambda r: r[-1]):... print "-----------"... print "Group: " + value... print_data(group)...-----------Group: hardyoung myope yes normal hardyoung hypermetrope yes normal hardpre-presbyopic myope yes normal hardpresbyopic myope yes normal hard-----------Group: noneyoung myope no reduced noneyoung myope yes reduced noneyoung hypermetrope no reduced noneyoung hypermetrope yes reduced nonepre-presbyopic myope no reduced nonepre-presbyopic myope yes reduced nonepre-presbyopic hypermetrope no reduced nonepre-presbyopic hypermetrope yes reduced nonepre-presbyopic hypermetrope yes normal nonepresbyopic myope no reduced nonepresbyopic myope no normal nonepresbyopic myope yes reduced nonepresbyopic hypermetrope no reduced nonepresbyopic hypermetrope yes reduced nonepresbyopic hypermetrope yes normal none-----------Group: softyoung myope no normal softyoung hypermetrope no normal softpre-presbyopic myope no normal softpre-presbyopic hypermetrope no normal softpresbyopic hypermetrope no normal soft |
38、在任意目录启动HTTP服务
python -m SimpleHTTPServer 5000Serving HTTP on 0.0.0.0 port 5000 ... |
39、Python之禅
>>> import thisThe Zen of Python, by Tim PetersBeautiful is better than ugly.Explicit is better than implicit.Simple is better than complex.Complex is better than complicated.Flat is better than nested.Sparse is better than dense.Readability counts.Special cases aren"t special enough to break the rules.Although practicality beats purity.Errors should never pass silently.Unless explicitly silenced.In the face of ambiguity, refuse the temptation to guess.There should be one-- and preferably only one --obvious way to do it.Although that way may not be obvious at first unless you"re Dutch.Now is better than never.Although never is often better than *right* now.If the implementation is hard to explain, it"s a bad idea.If the implementation is easy to explain, it may be a good idea.Namespaces are one honking great idea -- let"s do more of those! |
40、使用C风格的大括号代替Python缩进来表示作用域
>>> from __future__ import braces |
40个你可能不知道的Python的特点和技巧的更多相关文章
- 你所不知道的15个Axure使用技巧
你有用原型开发工具吗?如果有,那你用的是Axure还是别的? 从以前就喜欢使用Axure,主要是觉得它能清楚的表达设计的思路,还有交互的真实再现,能让看的人一目了然,昨天看了这篇博文,便更加确定Axu ...
- 你可能不知道的python
1.如何循环获得下标,使用 enumerate ints = ['a','b','c','d','e','f'] for idx, val in enumerate(ints): print idx, ...
- 你所不知道的Python奇技淫巧
有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一 ...
- 不得不知道的Python字符串编码相关的知识
开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII character 'ascii' codec can't encode characters in posi ...
- 转:11个实用但你可能不知道的Python程序库
原文来自于:http://www.techug.com/11-python-libraries-you-might-not-know 目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它 ...
- 11个实用但你可能不知道的Python程序库
目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它们.单单PyPi上就有超过47000个包列表. 现在,越来越多的数据科学家开始使用Python,虽然他们从pandas,scikit- ...
- 【转载】不得不知道的Python字符串编码相关的知识
原文地址:http://www.cnblogs.com/Xjng/p/5093905.html 开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII charact ...
- 关于Python你不得不知道的Python语言特点
首先什么是语言?什么是编程? 准确来说是:定义计算机程序的语言,用来向计算机发送指令 个人理解: 语言:是一种交流的工具或者方式.比如我们的汉语普通话.各地的方言.外语中的英语.俄语.日语等.我们 ...
- 你可能不知道的 Python 技巧
英文 | Python Tips and Trick, You Haven't Already Seen 原作 | Martin Heinz (https://martinheinz.dev) 译者 ...
随机推荐
- sed & awk & grep 专题( 鸟哥 )
grep, sed 与 awk 相当有用 ! gerp 查找, sed 编辑, awk 根据内容分析并处理. awk(关键字:分析&处理) 一行一行的分析处理 awk '条件类型1{动作1}条 ...
- 项模板选择器属性(ItemTemplateSelector属性)和样式选择器(ItemContainerStyleSelector)
3.4.5 共享尺寸组 样式选择器: 或者========================================
- faceswap
https://github.com/deepfakes/faceswap https://anonfile.com/p7w3m0d5be
- 使用bbed编辑研究oracle数据块结构
bbed是随oracle软件公布的一款数据块查看和编辑工具,作为一款内部工具.bbed的功能很强大,可是假设使用不当可能给数据库造成无法挽回的损失.因此.我们建议在使用bbed改动数据块前备份被改动的 ...
- 改动MySQL数据库port号 2.0
这里通过改动数据库服务启动时的配置文件来达到改动的目的 Linux下的配置文件夹文件(演示样例):/usr/local/mysql/my.cnf [mysqld] # Remove leading # ...
- SQL 基本关键字 函数 关联 连接
http://www.w3cschool.cn/sql_having.html w3c中有些SQL的讲解 1 order by 排序 SELECT Company, OrderNumber FROM ...
- C#实现按键精灵的'找图' '找色' '找字'的功能
http://www.cnblogs.com/JimmyBright/p/4355862.html 背景:游戏辅助功能通常使用按键精灵编写脚本,按键精灵的最大卖点就是能够找到画面中字,图,色,这对于模 ...
- TextView 图片居右
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout ...
- Python抓取网页并保存为PDF
https://blog.csdn.net/shenwanjiang111/article/details/67634794
- VS中没有为此解决方案配置选中要生成的项目
菜单->生成->配置管理器->给要生成的项目打钩