40个你可能不知道的Python的特点和技巧
1、拆箱
>>> a, b, c = 1, 2, 3>>> a, b, c(1, 2, 3)>>> a, b, c = [1, 2, 3]>>> a, b, c(1, 2, 3)>>> a, b, c = (2 * i + 1 for i in range(3))>>> a, b, c(1, 3, 5)>>> a, (b, c), d = [1, (2, 3), 4]>>> a1>>> b2>>> c3>>> d4 |
2、使用拆箱进行变量交换
>>> a, b = 1, 2>>> a, b = b, a>>> a, b(2, 1) |
3、扩展的拆箱(Python 3支持)
>>> a, *b, c = [1, 2, 3, 4, 5]>>> a1>>> b[2, 3, 4]>>> c5 |
4、负数索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-1]10>>> a[-3]8 |
5、列表切片(a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[2:8][2, 3, 4, 5, 6, 7] |
6、负数索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[-4:-2][7, 8] |
7、带步数的列表切片(a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::2][0, 2, 4, 6, 8, 10]>>> a[::3][0, 3, 6, 9]>>> a[2:8:2][2, 4, 6] |
8、负数步数的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]>>> a[::-1][10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]>>> a[::-2][10, 8, 6, 4, 2, 0] |
9、列表切片赋值
>>> a = [1, 2, 3, 4, 5]>>> a[2:3] = [0, 0]>>> a[1, 2, 0, 0, 4, 5]>>> a[1:1] = [8, 9]>>> a[1, 8, 9, 2, 0, 0, 4, 5]>>> a[1:-1] = []>>> a[1, 5] |
10、切片命名(slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]>>> LASTTHREE = slice(-3, None)>>> LASTTHREEslice(-3, None, None)>>> a[LASTTHREE][3, 4, 5] |
11、遍历列表索引和值(enumerate)
>>> a = ["Hello", "world", "!"]>>> for i, x in enumerate(a):... print "{}: {}".format(i, x)...0: Hello1: world2: ! |
12、遍历字典的KEY和VALUE(dict.iteritems)
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}>>> for k, v in m.iteritems():... print "{}: {}".format(k, v)...a: 1c: 3b: 2d: 4# 注意:Python 3中要使用dict.items |
13、压缩 & 解压列表和可遍历对象
>>> a = [1, 2, 3]>>> b = ["a", "b", "c"]>>> z = zip(a, b)>>> z[(1, "a"), (2, "b"), (3, "c")]>>> zip(*z)[(1, 2, 3), ("a", "b", "c")] |
14、使用zip分组相邻列表项
>>> a = [1, 2, 3, 4, 5, 6]>>> # Using iterators>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)]>>> # Using slices>>> from itertools import islice>>> group_adjacent = lambda a, k: zip(*(islice(a, i, None, k) for i in range(k)))>>> group_adjacent(a, 3)[(1, 2, 3), (4, 5, 6)]>>> group_adjacent(a, 2)[(1, 2), (3, 4), (5, 6)]>>> group_adjacent(a, 1)[(1,), (2,), (3,), (4,), (5,), (6,)] |
15、使用zip & iterators实现推拉窗(n-grams)
>>> from itertools import islice>>> def n_grams(a, n):... z = (islice(a, i, None) for i in range(n))... return zip(*z)...>>> a = [1, 2, 3, 4, 5, 6]>>> n_grams(a, 3)[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]>>> n_grams(a, 2)[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]>>> n_grams(a, 4)[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)] |
16、使用zip反相字典对象
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}>>> m.items()[("a", 1), ("c", 3), ("b", 2), ("d", 4)]>>> zip(m.values(), m.keys())[(1, "a"), (3, "c"), (2, "b"), (4, "d")]>>> mi = dict(zip(m.values(), m.keys()))>>> mi{1: "a", 2: "b", 3: "c", 4: "d"} |
17、合并列表
>>> a = [[1, 2], [3, 4], [5, 6]]>>> list(itertools.chain.from_iterable(a))[1, 2, 3, 4, 5, 6]>>> sum(a, [])[1, 2, 3, 4, 5, 6]>>> [x for l in a for x in l][1, 2, 3, 4, 5, 6]>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]>>> [x for l1 in a for l2 in l1 for x in l2][1, 2, 3, 4, 5, 6, 7, 8]>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]>>> flatten(a)[1, 2, 3, 4, 5, 6, 7, 8]Note: according to Python"s documentation on sum, itertools.chain.from_iterable is the preferred method for this. |
18、生成器
>>> g = (x ** 2 for x in xrange(10))>>> next(g)0>>> next(g)1>>> next(g)4>>> next(g)9>>> sum(x ** 3 for x in xrange(10))2025>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)408 |
19、字典解析
>>> m = {x: x ** 2 for x in range(5)}>>> m{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}>>> m = {x: "A" + str(x) for x in range(10)}>>> m{0: "A0", 1: "A1", 2: "A2", 3: "A3", 4: "A4", 5: "A5", 6: "A6", 7: "A7", 8: "A8", 9: "A9"} |
20、使用字典解析反相字典对象
>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}>>> m{"d": 4, "a": 1, "b": 2, "c": 3}>>> {v: k for k, v in m.items()}{1: "a", 2: "b", 3: "c", 4: "d"} |
21、命名的tuples(collections.namedtuple)
>>> Point = collections.namedtuple("Point", ["x", "y"])>>> p = Point(x=4.0, y=2.0)>>> pPoint(x=4.0, y=2.0)>>> p.x4.0>>> p.y2.0 |
22、继承命名tuples
>>> class Point(collections.namedtuple("PointBase", ["x", "y"])):... __slots__ = ()... def __add__(self, other):... return Point(x=self.x + other.x, y=self.y + other.y)...>>> p = Point(x=4.0, y=2.0)>>> q = Point(x=2.0, y=3.0)>>> p + qPoint(x=6.0, y=5.0) |
23、Set & Set运算
>>> A = {1, 2, 3, 3}>>> Aset([1, 2, 3])>>> B = {3, 4, 5, 6, 7}>>> Bset([3, 4, 5, 6, 7])>>> A | Bset([1, 2, 3, 4, 5, 6, 7])>>> A & Bset([3])>>> A - Bset([1, 2])>>> B - Aset([4, 5, 6, 7])>>> A ^ Bset([1, 2, 4, 5, 6, 7])>>> (A ^ B) == ((A - B) | (B - A))True |
24、Multisets运算(collections.Counter)
>>> A = collections.Counter([1, 2, 2])>>> B = collections.Counter([2, 2, 3])>>> ACounter({2: 2, 1: 1})>>> BCounter({2: 2, 3: 1})>>> A | BCounter({2: 2, 1: 1, 3: 1})>>> A & BCounter({2: 2})>>> A + BCounter({2: 4, 1: 1, 3: 1})>>> A - BCounter({1: 1})>>> B - ACounter({3: 1}) |
25、列表中出现最多的元素(collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])>>> ACounter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})>>> A.most_common(1)[(3, 4)]>>> A.most_common(3)[(3, 4), (1, 2), (2, 2)] |
26、双向队列(collections.deque)
>>> Q = collections.deque()>>> Q.append(1)>>> Q.appendleft(2)>>> Q.extend([3, 4])>>> Q.extendleft([5, 6])>>> Qdeque([6, 5, 2, 1, 3, 4])>>> Q.pop()4>>> Q.popleft()6>>> Qdeque([5, 2, 1, 3])>>> Q.rotate(3)>>> Qdeque([2, 1, 3, 5])>>> Q.rotate(-3)>>> Qdeque([5, 2, 1, 3]) |
27、限制长度的双向队列(collections.deque)
>>> last_three = collections.deque(maxlen=3)>>> for i in xrange(10):... last_three.append(i)... print ", ".join(str(x) for x in last_three)...00, 10, 1, 21, 2, 32, 3, 43, 4, 54, 5, 65, 6, 76, 7, 87, 8, 9 |
28、排序字典(collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))>>> print ", ".join(m.keys())1, 0, 3, 2, 5, 4, 7, 6, 9, 8>>> m = collections.OrderedDict((str(x), x) for x in range(10))>>> print ", ".join(m.keys())0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))>>> print ", ".join(m.keys())10, 9, 8, 7, 6, 5, 4, 3, 2, 1 |
29、默认字典(collections.defaultdict)
>>> m = dict()>>> m["a"]Traceback (most recent call last):File "<stdin>", line 1, in <module>KeyError: "a">>>>>> m = collections.defaultdict(int)>>> m["a"]0>>> m["b"]0>>> m = collections.defaultdict(str)>>> m["a"]"">>> m["b"] += "a">>> m["b"]"a">>> m = collections.defaultdict(lambda: "[default value]")>>> m["a"]"[default value]">>> m["b"]"[default value]" |
30、使用defaultdict代表tree
>>> import json>>> tree = lambda: collections.defaultdict(tree)>>> root = tree()>>> root["menu"]["id"] = "file">>> root["menu"]["value"] = "File">>> root["menu"]["menuitems"]["new"]["value"] = "New">>> root["menu"]["menuitems"]["new"]["onclick"] = "new();">>> root["menu"]["menuitems"]["open"]["value"] = "Open">>> root["menu"]["menuitems"]["open"]["onclick"] = "open();">>> root["menu"]["menuitems"]["close"]["value"] = "Close">>> root["menu"]["menuitems"]["close"]["onclick"] = "close();">>> print json.dumps(root, sort_keys=True, indent=4, separators=(",", ": ")){"menu": {"id": "file","menuitems": {"close": {"onclick": "close();","value": "Close"},"new": {"onclick": "new();","value": "New"},"open": {"onclick": "open();","value": "Open"}},"value": "File"}}# 查看更多:https://gist.github.com/hrldcpr/2012250 |
31、映射对象到唯一的计数数字(collections.defaultdict)
>>> import itertools, collections>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)>>> value_to_numeric_map["a"]0>>> value_to_numeric_map["b"]1>>> value_to_numeric_map["c"]2>>> value_to_numeric_map["a"]0>>> value_to_numeric_map["b"]1 |
32、最大 & 最小元素(heapq.nlargest and heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]>>> heapq.nsmallest(5, a)[3, 3, 5, 6, 8]>>> heapq.nlargest(5, a)[100, 100, 99, 98, 98] |
33、笛卡尔积(itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):(1, 4)(1, 5)(2, 4)(2, 5)(3, 4)(3, 5)>>> for p in itertools.product([0, 1], repeat=4):... print "".join(str(x) for x in p)...0000000100100011010001010110011110001001101010111100110111101111 |
34、组合(itertools.combinations and itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):... print "".join(str(x) for x in c)...123124125134135145234235245345>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):... print "".join(str(x) for x in c)...111213222333 |
35、排列(itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):... print "".join(str(x) for x in p)...123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321 |
36、链接可遍历对象(itertools.chain)
>>> a = [1, 2, 3, 4]>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):... print p...(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))... print subset...()(1,)(2,)(3,)(4,)(1, 2)(1, 3)(1, 4)(2, 3)(2, 4)(3, 4)(1, 2, 3)(1, 2, 4)(1, 3, 4)(2, 3, 4)(1, 2, 3, 4) |
37、根据给定的KEY分组(itertools.groupby)
>>> from operator import itemgetter>>> import itertools>>> with open("contactlenses.csv", "r") as infile:... data = [line.strip().split(",") for line in infile]...>>> data = data[1:]>>> def print_data(rows):... print " ".join(" ".join("{: <16}".format(s) for s in row) for row in rows)...>>> print_data(data)young myope no reduced noneyoung myope no normal softyoung myope yes reduced noneyoung myope yes normal hardyoung hypermetrope no reduced noneyoung hypermetrope no normal softyoung hypermetrope yes reduced noneyoung hypermetrope yes normal hardpre-presbyopic myope no reduced nonepre-presbyopic myope no normal softpre-presbyopic myope yes reduced nonepre-presbyopic myope yes normal hardpre-presbyopic hypermetrope no reduced nonepre-presbyopic hypermetrope no normal softpre-presbyopic hypermetrope yes reduced nonepre-presbyopic hypermetrope yes normal nonepresbyopic myope no reduced nonepresbyopic myope no normal nonepresbyopic myope yes reduced nonepresbyopic myope yes normal hardpresbyopic hypermetrope no reduced nonepresbyopic hypermetrope no normal softpresbyopic hypermetrope yes reduced nonepresbyopic hypermetrope yes normal none>>> data.sort(key=itemgetter(-1))>>> for value, group in itertools.groupby(data, lambda r: r[-1]):... print "-----------"... print "Group: " + value... print_data(group)...-----------Group: hardyoung myope yes normal hardyoung hypermetrope yes normal hardpre-presbyopic myope yes normal hardpresbyopic myope yes normal hard-----------Group: noneyoung myope no reduced noneyoung myope yes reduced noneyoung hypermetrope no reduced noneyoung hypermetrope yes reduced nonepre-presbyopic myope no reduced nonepre-presbyopic myope yes reduced nonepre-presbyopic hypermetrope no reduced nonepre-presbyopic hypermetrope yes reduced nonepre-presbyopic hypermetrope yes normal nonepresbyopic myope no reduced nonepresbyopic myope no normal nonepresbyopic myope yes reduced nonepresbyopic hypermetrope no reduced nonepresbyopic hypermetrope yes reduced nonepresbyopic hypermetrope yes normal none-----------Group: softyoung myope no normal softyoung hypermetrope no normal softpre-presbyopic myope no normal softpre-presbyopic hypermetrope no normal softpresbyopic hypermetrope no normal soft |
38、在任意目录启动HTTP服务
python -m SimpleHTTPServer 5000Serving HTTP on 0.0.0.0 port 5000 ... |
39、Python之禅
>>> import thisThe Zen of Python, by Tim PetersBeautiful is better than ugly.Explicit is better than implicit.Simple is better than complex.Complex is better than complicated.Flat is better than nested.Sparse is better than dense.Readability counts.Special cases aren"t special enough to break the rules.Although practicality beats purity.Errors should never pass silently.Unless explicitly silenced.In the face of ambiguity, refuse the temptation to guess.There should be one-- and preferably only one --obvious way to do it.Although that way may not be obvious at first unless you"re Dutch.Now is better than never.Although never is often better than *right* now.If the implementation is hard to explain, it"s a bad idea.If the implementation is easy to explain, it may be a good idea.Namespaces are one honking great idea -- let"s do more of those! |
40、使用C风格的大括号代替Python缩进来表示作用域
>>> from __future__ import braces |
40个你可能不知道的Python的特点和技巧的更多相关文章
- 你所不知道的15个Axure使用技巧
你有用原型开发工具吗?如果有,那你用的是Axure还是别的? 从以前就喜欢使用Axure,主要是觉得它能清楚的表达设计的思路,还有交互的真实再现,能让看的人一目了然,昨天看了这篇博文,便更加确定Axu ...
- 你可能不知道的python
1.如何循环获得下标,使用 enumerate ints = ['a','b','c','d','e','f'] for idx, val in enumerate(ints): print idx, ...
- 你所不知道的Python奇技淫巧
有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一 ...
- 不得不知道的Python字符串编码相关的知识
开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII character 'ascii' codec can't encode characters in posi ...
- 转:11个实用但你可能不知道的Python程序库
原文来自于:http://www.techug.com/11-python-libraries-you-might-not-know 目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它 ...
- 11个实用但你可能不知道的Python程序库
目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它们.单单PyPi上就有超过47000个包列表. 现在,越来越多的数据科学家开始使用Python,虽然他们从pandas,scikit- ...
- 【转载】不得不知道的Python字符串编码相关的知识
原文地址:http://www.cnblogs.com/Xjng/p/5093905.html 开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII charact ...
- 关于Python你不得不知道的Python语言特点
首先什么是语言?什么是编程? 准确来说是:定义计算机程序的语言,用来向计算机发送指令 个人理解: 语言:是一种交流的工具或者方式.比如我们的汉语普通话.各地的方言.外语中的英语.俄语.日语等.我们 ...
- 你可能不知道的 Python 技巧
英文 | Python Tips and Trick, You Haven't Already Seen 原作 | Martin Heinz (https://martinheinz.dev) 译者 ...
随机推荐
- SparseArray具体解释,我说SparseArray,你说要!
可能在Android 中使用HashMap 的时候看到过提示. HashMap<Integer,Bitmap> mp = new HashMap<Integer,Bitmap> ...
- python 面向对象类成员(字段 方法 属性)
一.字段 字段包括:普通字段和静态字段,他们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同, 普通字段属于对象 静态字段属于类 class Province: # 静态字段 countr ...
- asp.net源程序编译为dll文件并调用的实现过程
很多时候,我们需要将.cs文件单独编译成.dll文件,这就需要使用csc命令将.cs文件编译成.dll动态链接库文件.具体的操作步骤如下: 打开命令窗口->输入cmd到控制台->cd C: ...
- poj 2117(割点的应用)
题目链接:http://poj.org/problem?id=2117 思路:题目的意思是要求对于给定的无向图,删除某个顶点后,求最大的连通分量数.显然我们只有删掉割点后,连通分支数才会增加,因此我们 ...
- AsyncTask机制学习
其内容可以参考http://blog.csdn.net/webgeek/article/details/17298237 ,首先创建一个AsyncTask类 class GetFaceDetectTa ...
- JDK的命令具体解释操作
JDK的命令具体解释1 rmic 功能说明: rmic 为远程对象生成 stub 和 skeleton. 语法: rmic [ options ] package-qualified-class-na ...
- iphone客户端上传图片到服务器
本文转载至 http://blog.sina.com.cn/s/blog_4c70701801012inq.html 如上采用asihttprequest类中的post方式上传就行.大致思 ...
- Android开发:《Gradle Recipes for Android》阅读笔记(翻译)2.7——使用Android Studio签署发布apk
问题: 想要使用Android studio生成签名配置,给他们分配build类型. 解决方案: Build菜单提供了生成签名配置,Project Structure窗口有tab用于分配不同的type ...
- Oracle Delete与系统资源
在用Delete删除数据时,SQL语句首先要通过全表扫描或索引扫描找到符合条件的记录并删除. 然而在这个过程中将消耗大量的CPU资源,I/O资源以及UNDO数据. 如果删除的数据量较大,将极大的影响系 ...
- codevs 必做:堆:1245、2879 并查集:1069、1074、1073
1245 最小的N个和 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 有两个长度为 N ...