【LeetCode】最大子阵列 Maximum Subarray(贪婪&分治)
描述:
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路一:动态规划
因为这是个优化问题。并且问题可以分解为一个个子问题,所以利用DP来解决此问题是一种很好的解决方案:
dp[i-1]到dp[i]的转换分两种情况:
1)dp[i-1] > 0: 当大于0时,dp[i] = dp[i-1] + num[i]
2) dp[i-1] < 0:当大于0时,dp[i] = 0 (因为此时将剔除dp[i-1]的影响)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
vector<int> dp(nums.size());
dp[] = nums[];
int max_ans = dp[];
for(int i = ;i<nums.size();++i){
dp[i] = nums[i] + (dp[i-] > ? dp[i-] : );
max_ans = max(max_ans, dp[i]);
}
return max_ans;
}
};
思路二:贪婪
从左到右汇总数组时找到总和最优解,和dp类似,但是我们这里不保存dp的状态,只记录临时sum和最大sum
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int sum = ;
int ans;
ans = nums[];
for(int i = ;i<nums.size();i++){
sum+=nums[i];
ans = max(ans,sum);
sum = max(sum,);
}
return ans;
}
};
思路三:分治法
分治法的思路是将问题不断二分,分到不能再分,然后再将计算完的数据整合归一,最后得出最优解,这里,如图所示,将数组不断二分,然后取出每一段的最大sum,然后传回总函数,然后输出最优解

class Solution {
public:
int maxSubArray(vector<int>& nums) {
if(nums.size()==) return ;
return maxSubArray(nums, , nums.size() - );
}
// l代表数组左端low,h代表数组右端high,返回最大sum
int maxSubArray(vector<int>& arr, int l, int h)
{
// Base Case: Only one element
if (l == h)
return arr[l];
// Find middle point
int m = (l + h)/;
/* Return maximum of following three possible cases
a) Maximum subarray sum in left half
b) Maximum subarray sum in right half
c) Maximum subarray sum such that the subarray crosses the midpoint */
return max(max(maxSubArray(arr, l, m), //最左侧数组求最大sum
maxSubArray(arr, m+, h)), //对右侧数组求最大sum ,之后求左右的最大值
maxCrossingSum(arr, l, m, h)); //对整个数组以mid为分界线求最大sum
}
int maxCrossingSum(vector<int>& arr, int l, int m, int h)
{
// Include elements on left of mid.
int sum = ;
int left_sum = INT_MIN;
for (int i = m; i >= l; i--)
{
sum = sum + arr[i];
if (sum > left_sum)
left_sum = sum;
}
// Include elements on right of mid
sum = ;
int right_sum = INT_MIN;
for (int i = m+; i <= h; i++)
{
sum = sum + arr[i];
if (sum > right_sum)
right_sum = sum;
}
// Return sum of elements on left and right of mid
return left_sum + right_sum;
}
};
【LeetCode】最大子阵列 Maximum Subarray(贪婪&分治)的更多相关文章
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- LeetCode Array Easy 53. Maximum Subarray 个人解法 和分治思想的学习
Description Given an integer array nums, find the contiguous subarray (containing at least one numbe ...
- LeetCode练题——53. Maximum Subarray
1.题目 53. Maximum Subarray——Easy Given an integer array nums, find the contiguous subarray (containin ...
- LeetCode OJ平台上Maximum Subarray题目O(n)复杂度解决方式
原始题目例如以下,意为寻找数组和最大的子串,返回这个最大和就可以. Find the contiguous subarray within an array (containing at least ...
- LeetCode之“动态规划”:Maximum Subarray
题目链接 题目要求: Find the contiguous subarray within an array (containing at least one number) which has t ...
- [LeetCode&Python] Problem 53. Maximum Subarray
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode]题53:Maximum Subarray
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [leetcode.com]算法题目 - Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- LeetCode(53) Maximum Subarray
题目 Find the contiguous subarray within an array (containing at least one number) which has the large ...
随机推荐
- MVC-Model
用模型取代字典理由: **使用字典的坏处 一般情况下,存入数据和取出数据都使用“字典类型的key”,编写这些key时,编译时不会有任何的友善提示,需要手敲,容易出错. dict[@“name”] = ...
- java 服务接口API限流 Rate Limit
一.场景描述 很多做服务接口的人或多或少的遇到这样的场景,由于业务应用系统的负载能力有限,为了防止非预期的请求对系统压力过大而拖垮业务应用系统. 也就是面对大流量时,如何进行流量控制? 服务接口的流量 ...
- Linux Linux程序练习三
/* index1 = 45 index2 = 36 index3 = 231 index4 = 43 index5 = 100 index6 = 123 index7 = 51 * * 通过读取读取 ...
- 如需在 HTML 页面中插入 JavaScript,请使用 <script> 标签。
如需在 HTML 页面中插入 JavaScript,请使用 <script> 标签. <script> 和 </script> 会告诉 JavaScript 在何处 ...
- phpcms v9 配置sphinx全文索引教程
英文介绍:http://www.sphinxsearch.com/docs/manual-0.9.9.html 一.首先需要在服务器上安装sphinx 在Windows上安装sphinx 1. ...
- C# 持续序列化对象追加到文件的方法
最近有个需求,将内存和帧数数据序列化到二进制文件.为了节省内存,采用了100个对象的数组,每次存满就序列化到文件,然后归零继续存,以追加的性式继续序列化到原有文件. 这样相当于多个数组对象存在了同一个 ...
- awk特征相同行的合并
[root@linux-node1 ~]# cat test.txt hisk01 hisk02 hisk03 hisk04 hisk05 hisk06 hisk07 hisk08 [root@lin ...
- B - The Suspects(并查集)
B - The Suspects Time Limit:1000MS Memory Limit:20000KB 64bit IO Format:%lld & %llu Desc ...
- 关于angularjs的select下拉列表存在空白的解决办法
angularjs 的select的option是通过循环造成的,循环的方式可能有ng-option或者</option ng-repeat></option>option中 ...
- java 对list 排序
Comparable用Collections.sort方法对list排序有两种方法第一种是list中的对象实现Comparable接口,如下: /*** 根据order对User排序*/public ...