看了半天...发现就是个背包...然后就不打算敲了. 看了一眼forum..顿时吓傻..其他人用了gcd啊什么的各种奇怪的东西..然后还是敲了个背包结果就AC了= =既然写了代码就扔上来吧...

------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 1000009;
const int INF = 0X3F3F3F3F;
 
int V[maxn];
int n, N, c[3];
 
int main() {
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", c + i);
scanf("%d", &N);
memset(V, INF, sizeof V); V[0] = 0;
for(int i = 0; i < n; i++)
for(int v = c[i]; v <= N; v++)
V[v] = min(V[v], V[v - c[i]] + 1);
if(V[N] != INF)
printf("%d\n", V[N]);
else
puts("-1");
return 0;
}

------------------------------------------------------------------------

248. Integer Linear Programming

time limit per test: 0.25 sec.
memory limit per test: 65536 KB
input: standard
output: standard

You are to solve some problem of integer linear programming. It is posed in the following way. Let x[i] be a variable which is required to be a non-negative integer (for any i from [1..N]). The goal is to minimize the function f(x[1], x[2],..., x[N])=x[1]+x[2]+...+x[N] (objective function) satisfying the constraint c[1]*x[1]+c[2]*x[2]+...+c[N]*x[N]=V. 
The point X=(x[1], x[2],..., x[N]) that satisfies the constraint is called "feasible". All feasible points form a feasible set. 
To make things clear, let us consider the following example N=2, c[1]=2, c[2]=4, V=6. There are only two feasible points: (1, 1) and (3, 0). 
Clearly, the point (1, 1) is the optimal solution, because f(1, 1)<f(3, 0).
Input
The first line of input contains a single positive integer N (0<N<=3). The second line contains N positive integers c[i] separated by whitespaces (0<c[i]<=10^6). The last line contains positive integer V (0<V<=10^6).
Output
On the first line of the output file print the minimal possible value of the function f, or "-1" (without quotes) if the problem has no solution.
Sample test(s)
Input

Test #1 

2 4 
6

Test #2 

7 4 
9

Output

Test #1 
2

Test #2 
-1

Note
See picture: 

Author: Dmitry Filippov (DEF)
Resource: Petrozavodsk Summer Training Sessions 2004
Date: August 25, 2004

SGU 248. Integer Linear Programming( 背包dp )的更多相关文章

  1. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  2. 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp

    题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...

  3. Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp

    D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...

  4. HDU 5119 Happy Matt Friends (背包DP + 滚动数组)

    题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...

  5. poj 2184 01背包变形【背包dp】

    POJ 2184 Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14657   Accepte ...

  6. Codeforces 922 E Birds (背包dp)被define坑了的一题

    网页链接:点击打开链接 Apart from plush toys, Imp is a huge fan of little yellow birds! To summon birds, Imp ne ...

  7. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  8. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  9. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

随机推荐

  1. iOS第三方开源库的吐槽和备忘(转)

    原文:http://www.cocoachina.com/industry/20140123/7746.html 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽.   目前比较活跃的社区 ...

  2. MVC中Json的使用:Controller中Json的处理【转】

    一.当查询得到的数据符合前台要求,不需要做任何处理,直接DataList To Json 返回前台. 代码: , out recordCount); return Json(allEntities, ...

  3. ASP.NET 验证码 不同浏览器 不刷新问题

    具体为什么不刷新是缓存机制不同,验证码图片的src或ImageUrl的获取是来自一个文件,由于连接地址没变所以不同内核浏览器有的会认为源没有变,解决办法就是在连接后面加上一个随机参数如可以用JS的Ma ...

  4. Zoom属性的使用介绍(IE私有属性)

      其实Zoom属性是IE浏览器的专有属性,Firefox等浏览器不支持.它可以设置或检索对象的缩放比例.除此之外,它还有其他一些小作用,比如触发ie的hasLayout属性,清除浮动.清除margi ...

  5. CRM setValue方法日期类型字段赋值

    setvalue datetime 赋值 得到“/Date(14000023232323)/”  这样的值 需要把 /去掉 var dd = Result.yt_purchase_date.subst ...

  6. C#中的线程(一)入门 转

    文章系参考转载,英文原文网址请参考:http://www.albahari.com/threading/ 作者 Joseph Albahari,  翻译 Swanky Wu 中文翻译作者把原文放在了& ...

  7. 实现ModelDriver接口的功能

    ModelDriver接口 来自com.opensymphony.xwork2.ModelDriven.是xwork-2.1.2-750.jar包的东西. 下面是源码: package com.ope ...

  8. opcache effect

    with open opcache, the monitor cpu idle log , there are so much curl_exec and gzip in our php logic ...

  9. QF——UITableViewCell性能优化(视图复用机制)

    这几篇博客总结的不错: 点击进入 点击进入 总结起来方案一般有以下几种: 1.不使用透明视图: 2.减少视图的个数: 3.cell复用机制:(重点) 4.图片缓存: 5.网络请求使用非主线程. 6.预 ...

  10. jquery解决onmouseover和onmouseout合用的bug问题

    经常会遇到鼠标放到一个元素上显示另外一个元素,这两个元素是父子关系,比如在A上绑定mouseover和mouseout事件来显示或隐藏B元素,A元素包含B元素,当鼠标移到B元素后浏览器认为你移开了A, ...