Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 34306   Accepted: 16137
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source

 
题解:典型的RMQ问题。线段树的应用。
 
代码:
 #include<stdio.h>
#include<string.h>
#include<math.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> #define rep(i,a,b) for(i=(a);i<=(b);i++)
#define clr(x,y) memset(x,y,sizeof(x))
#define sqr(x) (x*x)
#define LL long long const int INF=0xffffff0; struct {
int L,R;
int minV,maxV;
} tree[]; int i,j,n,q,minV,maxV; int min(int a, int b)
{
if(a<b) return a;
return b;
} int max(int a,int b)
{
if(a>b) return a;
return b;
} void BuildTree(int root,int L,int R)
{
tree[root].L=L;
tree[root].R=R;
tree[root].maxV=-INF;
tree[root].minV=INF; if(L!=R) {
BuildTree(*root,L,(L+R)/);
BuildTree(*root+,(L+R)/+,R);
} } void Insert(int root,int i,int v)
{
int mid; if(tree[root].L==tree[root].R) {
tree[root].maxV=tree[root].minV=v;
return ;
} tree[root].minV=min(tree[root].minV,v);
tree[root].maxV=max(tree[root].maxV,v); mid=(tree[root].L+tree[root].R)/;
if(i<=mid)
Insert(*root,i,v);
else
Insert(*root+,i,v); } void Query(int root,int s,int e)
{
int mid; if(tree[root].minV>=minV && tree[root].maxV<=maxV) return ;
if(tree[root].L==s && tree[root].R==e) {
minV=min(minV,tree[root].minV);
maxV=max(maxV,tree[root].maxV);
return ;
} mid=(tree[root].L+tree[root].R)/; if(e<=mid)
Query(*root,s,e);
else if(s>mid)
Query(*root+,s,e);
else {
Query(*root,s,mid);
Query(*root+,mid+,e);
} } int main()
{
int i,x,y; scanf("%d%d",&n,&q);
BuildTree(,,n);
rep(i,,n) {
scanf("%d",&x);
Insert(,i,x);
} while(q--) {
scanf("%d%d",&x,&y);
minV=INF;
maxV=-INF;
Query(,x,y);
printf("%d\n",maxV-minV);
} return ;
}

[POJ] 3264 Balanced Lineup [线段树]的更多相关文章

  1. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  2. POJ 3264 Balanced Lineup 线段树RMQ

    http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...

  3. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  4. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

  5. POJ - 3264 Balanced Lineup 线段树解RMQ

    这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...

  6. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  7. Poj 3264 Balanced Lineup RMQ模板

    题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...

  8. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  9. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

随机推荐

  1. 磁珠(FB)的选用

    1. 磁珠(FB)的单位是欧姆,而不是亨特,这一点要特别注意.因为磁珠的单位是按照它在某一频率 产生的阻抗来标称的,阻抗的单位也是欧姆.磁珠的 DATASHEET上一般会提供频率和阻抗的特性曲线图,一 ...

  2. (7)如何得到所有的 "水仙花数" ?

    本程序转载自:如何得到所有的水仙花数 感谢Android_iPhone(日知己所无),preferme(冰思雨)等人: package test; import java.math.BigIntege ...

  3. struct2(一)第一个struct程序

    说明:本系列是针对struct2学习过程,主要的目的: 1. 探索针对一个新的开源框架的学习过程. 2. 学习struct2,学习官方对struct2介绍的方法. 3.别把英语忘了. 1. 为了更加清 ...

  4. libeXosip2(3-1) -- eXosip2 INVITE and Call Management

    eXosip2 INVITE and Call Management SIP messages and call control API Functions int  eXosip_call_set_ ...

  5. java 内存区域中的栈

    有人说栈区存放引用,这种说法并不准确. public void Method1() { int i = 4; int y = 2; class1 cls1 = new class1(); } java ...

  6. WPF - Build Error总结

    1. are you missing an assembly reference 给项目添加新控件的时候,经常发现这种错误 Error 21 The type or namespace name 'C ...

  7. JDBC中Statement接口提供的execute、executeQuery和executeUpdate之间的区别

    Statement 接口提供了三种执行 SQL 语句的方法:executeQuery.executeUpdate 和 execute.使用哪一个方法由 SQL 语句所产生的内容决定. 方法execut ...

  8. poj 3744 Scout YYF I (矩阵)

    Description YYF -p. Here is the task, given the place of each mine, please calculate the probality t ...

  9. 记录一些Linux C的常用库函数

    我已经受不了每次用的时候去百度了,还百度不出来..... [数字字符串转换篇] atof - convert a string to a double #include <stdlib.h> ...

  10. #python基础学习模块:marshal 对象的序列化

    #标准库地址:https://docs.python.org/2/library/marshal.html"""有时候,要把内存中一个对象持久化保存磁盘或者序列化二进制流 ...