Power of Fibonacci


Time Limit: 5 Seconds      Memory Limit: 65536 KB


In mathematics, Fibonacci numbers or Fibonacci series or Fibonacci sequence are the numbers of the following integer sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

By definition, the first two numbers in the Fibonacci sequence are 1 and 1, and each subsequent number is the sum of the previous two. In mathematical terms, the sequence Fn of
Fibonacci numbers is defined by the recurrence relation Fn = Fn - 1 + Fn - 2 with seed values F1 = 1 and F2 = 1.

And your task is to find ΣFiK, the sum of the K-th power of the first N terms in the Fibonacci sequence. Because the answer can
be very large, you should output the remainder of the answer divided by 1000000009.

Input

There are multiple test cases. The first line of input is an integer T indicates the number of test cases. For each test case:

There are two integers N and K (0 <= N <= 1018, 1 <= K <= 100000).

Output

For each test case, output the remainder of the answer divided by 1000000009.

Sample Input

5
10 1
4 20
20 2
9999 99
987654321987654321 98765

Sample Output

143
487832952
74049690
113297124
108672406

Hint

The first test case, 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143.

The second test case, 120 + 120 + 220 + 320 =3487832979, and 3487832979 = 3 * 1000000009 + 487832952, so the output is 487832952.

题目大意

非常明白,求菲波那契数列每一个数的m次方的前n项和。

思路

当时看到m的取值范围就没敢在往下写。直到cf 255(446 C)有一道类似思路的线段树,官方的editorial里面给出了一个解释,就是求其二次剩余,然后该数列能够用幂差来表示。

(二次剩余求解)

(以上三个式子均用拓展欧几里得推出。将sqrt5作为一个总体进行逆元求解)

(于是带入后我们就看到了一个剩余系的式子)

为什么要这么做的原因可能就和逆元的原理有些类似了,由于我们直到结果是整数,所以每一步都能在剩余系之中找到一个整数的运算取代了。

接下来就设

于是随意一个数的m次方为

对二项式展开之后其前n项求和

枚举k来求和就可以

对于中间的一项等比数列的求和来加速。否则仍会超时。

求二次剩余以及各项系数值的code:(因为二次剩余大多有两个不同根。所以结果不同未必影响计算结果)

模板来自:blog.csdn.net/acdreamers/article/details/10182281

#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000009
using namespace std;
long long sqrt5,s,r1,r2;
long long ts,w;
struct D{
long long p,d;
};
void egcd(long long a,long long b,long long &x,long long &y)
{
if (b==0)
{
x=1;
y=0;
return;
}
egcd(b,a%b,x,y);
int t=x;
x=y,y=t-a/b*y;
return;
}
long long mypow(long long x,long long y,long long p)
{
long long res=1,mul=x;
while (y)
{
if (y & 1)
res=res * mul % p;
mul=mul * mul % p;
y/=2;
}
return res;
}
D mul(D a,D b,long long m)
{
D ans;
ans.p=(a.p * b.p % m +a.d * b.d %m *w % m)%m;
ans.d=(a.p * b.d % m +a.d * b.p% m)%m;
return ans;
}
D power(D a,long long b,long long m)
{
D ans;
ans.p = 1;
ans.d = 0;
while (b)
{
if (b & 1)
{
ans=mul(ans,a,m);
}
b/=2;
a=mul(a,a,m);
}
return ans;
}
long long sqre(long long x,long long y)
{
if (y==2) return 1;
if (mypow(x,(y-1)>>1,y)+1 == y)
return -1;
long long a,t;
for (a=1;a<y;a++)
{
t= a * a - x;
w= (t + y) % y;
if (mypow(w,(y-1)>>1,y)+1 == y) break;
}
D tmp;
tmp.p=a;
tmp.d=1;
D ans = power(tmp,(y+1)>>1,y);
return ans.p;
}
int main()
{
sqrt5=sqre(5,mod);
printf("%I64d\n",sqrt5);
long long x,y;
egcd(5,mod,x,y);
x=(x+mod)%mod;
s=(sqrt5*x)%mod;
printf("%I64d\n",s); egcd(2,mod,x,y);
x=(x+mod)%mod;
r1=((sqrt5+1)*x)%mod;
r2=((-sqrt5+1+mod)*x)%mod; printf("%I64d\n",r1);
printf("%I64d\n",r2);
int T;
return 0;
}

系数带入后本题的代码

#include <cstdio>
#include <cstring>
#include <algorithm>
long long s=723398404,r1=308495997,r2=691504013;
long long mod=1000000009;
long long c[100005];
typedef long long Ma[2][2];
void egcd(long long a,long long b,long long &x,long long &y)
{
if (b==0)
{
x=1;
y=0;
return;
}
egcd(b,a%b,x,y);
int t=x;
x=y,y=t-a/b*y;
return;
}
long long mypow(long long x,long long y)
{
long long res=1;
while (y)
{
if (y%2)
res=res * x % mod;
x=x * x % mod;
y/=2;
}
return res;
}
long long acce(long long x,long long y)//等比数列高速求和
{
long long ans=0;
long long powe=x;
long long sum=x;
long long mul=1;
while (y)
{
if (y&1)
{
ans+=mul*sum;
ans%=mod;
mul*=powe;
mul%=mod;
}
sum*=(powe+1);
sum%=mod;
powe*=powe;
powe%=mod;
y/=2;
}
return ans;
}
int main()
{
int T;
long long n,m;
scanf("%d",&T);
while (T--)
{
long long ans=0;
scanf("%lld%lld",&n,&m);
c[0]=1;
long long x,y;
for (long long i=1;i<=m;i++)
{
egcd(i,mod,x,y);
x=(x+mod)%mod;
c[i]=(c[i-1]*x)%mod;
c[i]=(c[i]*(m-i+1))%mod;
}
for (long long i=0;i<=m;i++)
{
x=c[i];
x=x * acce(mypow(r1,i)*mypow(r2,m-i)%mod,n)%mod;
x=(x+mod)%mod;
if ((m-i)%2)
ans=(ans - x + mod)%mod;
else
ans=(ans + x + mod)%mod;
}
ans=ans*mypow(s,m)%mod;
printf("%lld\n",ans);
}
system("pause");
return 0;
}

[zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)的更多相关文章

  1. 51 Nod 1256 乘法逆元(数论:拓展欧几里得)

    1256 乘法逆元  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...

  2. ZOJ Problem Set - 3593 拓展欧几里得 数学

    ZOJ Problem Set - 3593 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593 One Person ...

  3. ACM数论-欧几里得与拓展欧几里得

    ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...

  4. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  5. SGU 141.Jumping Joe 数论,拓展欧几里得,二元不等式 难度:3

    141. Jumping Joe time limit per test: 0.25 sec. memory limit per test: 4096 KB Joe is a frog who lik ...

  6. poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】

    POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...

  7. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

  8. poj 1061 青蛙的约会+拓展欧几里得+题解

    青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出 ...

  9. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

随机推荐

  1. 软件看门狗--别让你地程序无响应(使用未公开API函数IsHungAppWindow,知识点较全)

    正文一.概述一些重要的程序,必须让它一直跑着:而且还要时时关心它的状态——不能让它出现死锁现象.当然,如果一个主程序会出现死锁,肯定是设计或者编程上的失误.我们首要做的事是,把这个Bug揪出来.但如果 ...

  2. 【Javascript下载文件的Post实现】

    /** *从服务器上下载数据 *@param paras Json格式的键值对参数 */ downLoadFromServer: function (paras) { //init a new win ...

  3. C# 中的关键字之:base、this 【转】

                                                                                 C# 中的关键字之:base.this. ba ...

  4. jQuery中设置form表单中action值的方法

    jQuery中设置form表单中action值的方法 (2011-03-17 10:18:19) 转载▼ 标签: 杂谈   html代码: <form id="myFormId&quo ...

  5. (转)flash的Socket通讯沙箱和安全策略问题

    一.沙箱和安全策略问题 1.此问题发生在连接时,准确地说是连接前,分别两种情况: 1.本地播放 本地播放时,默认情况下Flash Player将不允许swf访问任何网络. 访问http://www.m ...

  6. Leetcode:best_time_to_buy_and_sell_stock_II题解

    一.题目 如果你有一个数组,它的第i个元素是一个股票在一天的价格. 设计一个算法,找出最大的利润. 二.分析 假设当前值高于买入值,那么就卖出,同一时候买入今天的股票,并获利.假设当前值低于买入值,那 ...

  7. oracle em命令行配置及界面按钮乱码问题解决方法

    一.配置EM dbconsole db [oracle@rusky ~]$ lsnrctl start [oracle@rusky ~]$ emctl start dbconsoleTZ set to ...

  8. JavaScript 【非IE DOM2级XML】

    DOM2中的XML IE可以实现了对XML字符串或XML文件的读取,其他浏览器也各自实现了对XML处理功能.DOM2级在document.implementaion中引入了createDocument ...

  9. 第五章SignalR的实时高频通讯

    第五章SignalR的实时高频通讯 概述:本例子演示了如果创建一个对象与其他浏览器共享实时状态的应用程序.我们要创建的应用程序为“MoveShape”,该MoveShape页面会显示一个Html Di ...

  10. RouterOS(ROS)修改vrrp的mac地址