Matrix Chain Multiplication 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n (  ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000
error
3500
15000
40500
47500
15125

题解:矩阵链乘,让求计算矩阵连成后运算的次序;注意There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).也就是说两个相乘必定会出现括号的所以遇见括号不用记录(位置就可以了;

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ");
typedef long long LL;
struct Node{
int r,l;
Node(int x=0,int y=0):r(x),l(y){}
};
Node dt[30];
int main(){
int n,x,y;
char s[1010];
scanf("%d",&n);
mem(dt,0);
while(n--){
scanf("%s",s);
scanf("%d%d",&x,&y);
dt[s[0]-'A'].r=x;
dt[s[0]-'A'].l=y;
}
while(~scanf("%s",s)){
stack<Node>S;
int len=strlen(s);
Node a,b;
int ans=0,flot=1;
for(int i=0;i<len;i++){
if(isalpha(s[i])){
S.push(dt[s[i]-'A']);
}
else if(s[i]==')'){
b=S.top();S.pop();
a=S.top();S.pop();
//printf("%d %d\n",a.l,b.r);
if(a.l!=b.r){
flot=0;break;
}
ans+=a.r*a.l*b.l;
S.push(Node(a.r,b.l));
}
}
if(flot)
printf("%d\n",ans);
else puts("error");
}
return 0;
}

  

UVA-Matrix Chain Multiplication(栈)的更多相关文章

  1. UVa442 Matrix Chain Multiplication(栈)

    #include<cstdio>#include<cstring> #include<stack> #include<algorithm> #inclu ...

  2. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  3. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  4. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  5. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

  6. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  7. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  8. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  9. Matrix Chain Multiplication[HDU1082]

    Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  10. UVa 442 (栈) Matrix Chain Multiplication

    题意: 给出一个矩阵表达式,计算总的乘法次数. 分析: 基本的数学知识:一个m×n的矩阵A和n×s的矩阵B,计算AB的乘法次数为m×n×s.只有A的列数和B的行数相等时,两个矩阵才能进行乘法运算. 表 ...

随机推荐

  1. textarea 输入框限制字数

    在textarea标签中,只需要设置maxlength=”***”即可,但是在textarea标签中,IE9及IE9以下浏览器是不支持的,IE10.IE11则支持,估计后续的版本应该都会支持. 现在来 ...

  2. CSS自学笔记(4):CSS样式表的使用

    当浏览器读到一个样式表时,浏览器会根据这个样式表来格式化html文档,从而表现出各式各样的网页. 想要浏览器读到样式表,有三种方法: 1.外部样式表 外部样式表可以理解为.CSS文件.当多个页面使用同 ...

  3. 哥德尔,图灵和康托尔 part 2 停机问题

    图灵著名的停机问题对于软件开发者而已是非常熟悉的.下面简单描述停机问题: 假设给你一个计算机程序的源代码,也给你所有程序要用的数据,文件,硬盘,DVD等等,所有它需要处理的东西.你能告诉我程序最终是否 ...

  4. php使用check box

    if (isset($_POST['submit'])) { foreach ($_POST['todelete'] as $delete_id) { //这里是循环遍历这个数组 todelete 每 ...

  5. mysql关联更新

    update tb_sdd_info a,tb_bnm_evian_info b set a.username=b.username where a.username=b.memberno and  ...

  6. 浅谈HtmlUnit的使用

    一.htmlunit 是一款开源的java 页面分析工具,读取页面后,可以有效的使用htmlunit分析页面上的内容.项目可以模拟浏览器运行,被誉为java浏览器的开源实现.这个没有界面的浏览器,运行 ...

  7. Ubuntu常用命令整理

    最近开始用Ubuntu系统了,各种命令很不熟练,想收集一下,以便以后查阅,用这个时常更新的随笔 1.Ubuntu设置与修改用户密码 设置ROOT密码方法:sudo passwd root ,然后输入密 ...

  8. English - 英文写作中的最常见“十大句式”

    英文写作中的最常见“十大句式” from 小木虫论坛 一.否定句 许多否定句不含not的否定结构.如果论文作者能正确使用他们,就会增加写作的闪光点,使文章显得生动活泼. 1.Instead of in ...

  9. CocoaPods 出现 OTHER_LDFLAGS 错误的解决方法

    CocoaPods 出现 OTHER_LDFLAGS 错误的解决方法 在一些项目中运行 pod install 后经常会出现如下错误 [!] The target `项目名 [Debug]` over ...

  10. 加深理解UIView,UIResponder,UIController

    转载出处:http://www.th7.cn/Program/IOS/201503/406514.shtml 原文地址==>自定义控件:http://objccn.io/issue-3-4/ 读 ...