UVA-Matrix Chain Multiplication(栈)
| Matrix Chain Multiplication |
Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.
Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.
Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (
), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):
SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"
Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))
Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
题解:矩阵链乘,让求计算矩阵连成后运算的次序;注意There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).也就是说两个相乘必定会出现括号的所以遇见括号不用记录(位置就可以了;
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ");
typedef long long LL;
struct Node{
int r,l;
Node(int x=0,int y=0):r(x),l(y){}
};
Node dt[30];
int main(){
int n,x,y;
char s[1010];
scanf("%d",&n);
mem(dt,0);
while(n--){
scanf("%s",s);
scanf("%d%d",&x,&y);
dt[s[0]-'A'].r=x;
dt[s[0]-'A'].l=y;
}
while(~scanf("%s",s)){
stack<Node>S;
int len=strlen(s);
Node a,b;
int ans=0,flot=1;
for(int i=0;i<len;i++){
if(isalpha(s[i])){
S.push(dt[s[i]-'A']);
}
else if(s[i]==')'){
b=S.top();S.pop();
a=S.top();S.pop();
//printf("%d %d\n",a.l,b.r);
if(a.l!=b.r){
flot=0;break;
}
ans+=a.r*a.l*b.l;
S.push(Node(a.r,b.l));
}
}
if(flot)
printf("%d\n",ans);
else puts("error");
}
return 0;
}
UVA-Matrix Chain Multiplication(栈)的更多相关文章
- UVa442 Matrix Chain Multiplication(栈)
#include<cstdio>#include<cstring> #include<stack> #include<algorithm> #inclu ...
- UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)
意甲冠军 由于矩阵乘法计算链表达的数量,需要的计算 后的电流等于行的矩阵的矩阵的列数 他们乘足够的人才 非法输出error 输入是严格合法的 即使仅仅有两个相乘也会用括号括起来 并且括号中 ...
- UVA 442 二十 Matrix Chain Multiplication
Matrix Chain Multiplication Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %l ...
- 例题6-3 Matrix Chain Multiplication ,Uva 442
这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...
- Matrix Chain Multiplication(表达式求值用栈操作)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...
- UVA——442 Matrix Chain Multiplication
442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...
- ACM学习历程——UVA442 Matrix Chain Multiplication(栈)
Description Matrix Chain Multiplication Matrix Chain Multiplication Suppose you have to evaluate ...
- UVa442 Matrix Chain Multiplication
// UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...
- Matrix Chain Multiplication[HDU1082]
Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (J ...
- UVa 442 (栈) Matrix Chain Multiplication
题意: 给出一个矩阵表达式,计算总的乘法次数. 分析: 基本的数学知识:一个m×n的矩阵A和n×s的矩阵B,计算AB的乘法次数为m×n×s.只有A的列数和B的行数相等时,两个矩阵才能进行乘法运算. 表 ...
随机推荐
- javascript 动态创建表格
<html> <head> <script> function createTable(rows,lines){ this.rows=rows; this.line ...
- QT显示GIF图片
在QT中要显示GIF图片,不能通过单单的添加部件来完成. 还需要手动的编写程序. 工具:QT Creator 新建一个工程,我们先在designer中,添加一个QLabel部件. 如下图: 将QLab ...
- @RISK
Price: AUD $3,295.00 Price: AUD $2,495.00 适用于项目管理的 @RISK 免费试用版下载 » 立即购买 » 价格对比 » 许可选项 (英文) » 教学计 ...
- sim卡中的汉字存储格式
Sim卡中的ucs2格式 Sim卡中的中文都是以ucs2格式存储的,ucs2和unicode只是字节序不同,unicode是小头在前,ucs2是大头在前. Ucs2与GB2312互换可以用VC中的Wi ...
- C++ string实现原理
C++程序员编码过程中经常会使用string(wstring)类,你是否思考过它的内部实现细节.比如这个类的迭代器是如何实现的?对象占多少字节的内存空间?内部有没有虚函数?内存是如何分配的?构造和析构 ...
- poj 3323 Matrix Power Series (矩阵乘法 非递归形式)
为了搞自动机+矩阵的题目,特来学习矩阵快速幂..........非递归形式的求Sum(A+A^2+...+A^k)不是很懂,继续弄懂................不过代码简洁明了很多,亮神很给力 # ...
- 柯南君:看大数据时代下的IT架构(6)消息队列之RabbitMQ--案例(Publish/Subscribe起航)
二.Publish/Subscribe(发布/订阅)(using the Java Client) 为了说明这个模式,我们将构建一个简单的日志系统.它将包括两个项目: 第一个将发出日志消息 第二个将接 ...
- mongodb的 或 查询,实践总结
PostcardRecord.findOne({user:userid, $or : [ { at:{$gte:start.valueOf(), $lte:end.valueOf()} } , { i ...
- JSP简单练习-获取表单数据
在JSP中,server端程序与client交互最经常使用的方法就是採用表单提交数据.表单提交的方法主要有两种,一种是get方法.还有一种是post方法.两者最大的差别:使用get方法提交的数据会显示 ...
- Rabbit and Grass(杭电1849)(尼姆博弈)
Rabbit and Grass Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...