(原)torch中显示nn.Sequential()网络的详细情况
转载请注明出处:
http://www.cnblogs.com/darkknightzh/p/6065526.html
本部分多试几次就可以弄得清每一层具体怎么访问了。
step1. 网络定义如下:
require "dpnn"
local net = nn.Sequential()
net:add(nn.SpatialConvolution(, , , , , , , ))
net:add(nn.SpatialBatchNormalization())
net:add(nn.ReLU())
net:add(nn.SpatialMaxPooling(, , , , , ))
net:add(nn.Inception{
inputSize = ,
kernelSize = {, },
kernelStride = {, },
outputSize = {, },
reduceSize = {, , , },
pool = nn.SpatialMaxPooling(, , , , , ),
batchNorm = true
})
net:evaluate()
上面的网络,包含conv+BatchNorm+ReLU+Maxpool+Inception层。
step2. 直接通过print(net)便可得到其网络结构:
nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
(1): nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3)
(2): nn.SpatialBatchNormalization
(3): nn.ReLU
(4): nn.SpatialMaxPooling(3x3, 2,2, 1,1)
(5): nn.Inception @ nn.DepthConcat {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
| (1): nn.SpatialConvolution(64 -> 96, 1x1)
| (2): nn.SpatialBatchNormalization
| (3): nn.ReLU
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1)
| (5): nn.SpatialBatchNormalization
| (6): nn.ReLU
| }
|`-> (2): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
| (1): nn.SpatialConvolution(64 -> 16, 1x1)
| (2): nn.SpatialBatchNormalization
| (3): nn.ReLU
| (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2)
| (5): nn.SpatialBatchNormalization
| (6): nn.ReLU
| }
|`-> (3): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> output]
| (1): nn.SpatialMaxPooling(3x3, 1,1, 1,1)
| (2): nn.SpatialConvolution(64 -> 32, 1x1)
| (3): nn.SpatialBatchNormalization
| (4): nn.ReLU
| }
|`-> (4): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.SpatialConvolution(64 -> 64, 1x1)
(2): nn.SpatialBatchNormalization
(3): nn.ReLU
}
... -> output
}
}
但实际上该网络还包括input,output,gradInput等参数。
step3. 使用下面代码便可输出网络比较详细的参数:
for k,curLayer in pairs(net) do
print(k,curLayer)
end
step4. 输出:
_type torch.DoubleTensor
output [torch.DoubleTensor with no dimension] gradInput [torch.DoubleTensor with no dimension] modules {
1 :
{
dH : 2
dW : 2
nInputPlane : 3
output : DoubleTensor - empty
kH : 7
train : false
gradBias : DoubleTensor - size: 64
padH : 3
bias : DoubleTensor - size: 64
weight : DoubleTensor - size: 64x3x7x7
_type : "torch.DoubleTensor"
gradWeight : DoubleTensor - size: 64x3x7x7
padW : 3
nOutputPlane : 64
kW : 7
gradInput : DoubleTensor - empty
}
2 :
{
gradBias : DoubleTensor - size: 64
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
running_var : DoubleTensor - size: 64
momentum : 0.1
gradWeight : DoubleTensor - size: 64
eps : 1e-05
_type : "torch.DoubleTensor"
affine : true
running_mean : DoubleTensor - size: 64
bias : DoubleTensor - size: 64
weight : DoubleTensor - size: 64
train : false
}
3 :
{
inplace : false
threshold : 0
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
train : false
val : 0
}
4 :
{
dH : 2
dW : 2
kW : 3
gradInput : DoubleTensor - empty
indices : DoubleTensor - empty
train : false
_type : "torch.DoubleTensor"
padH : 1
ceil_mode : false
output : DoubleTensor - empty
kH : 3
padW : 1
}
5 :
{
outputSize :
{
1 : 128
2 : 32
}
inputSize : 64
gradInput : DoubleTensor - empty
modules :
{
1 :
{
train : false
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 : {...}
2 : {...}
3 : {...}
4 : {...}
}
dimension : 2
size : LongStorage - size: 0
}
}
kernelStride :
{
1 : 1
2 : 1
}
_type : "torch.DoubleTensor"
module :
{
train : false
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules : {...}
train : false
}
2 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules : {...}
train : false
}
3 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules : {...}
train : false
}
4 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules : {...}
train : false
}
}
dimension : 2
size : LongStorage - size: 0
}
poolStride : 1
padding : true
reduceStride : {...}
transfer :
{
inplace : false
threshold : 0
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
val : 0
}
batchNorm : true
train : false
pool :
{
dH : 1
dW : 1
kW : 3
gradInput : DoubleTensor - empty
indices : DoubleTensor - empty
train : false
_type : "torch.DoubleTensor"
padH : 1
ceil_mode : false
output : DoubleTensor - empty
kH : 3
padW : 1
}
poolSize : 3
reduceSize :
{
1 : 96
2 : 16
3 : 32
4 : 64
}
kernelSize :
{
1 : 3
2 : 5
}
output : DoubleTensor - empty
}
}
train false
上面的modules中,分别为conv、BatchNorm、ReLU、Maxpool、Inception对应的参数。
step5. 可通过net.modules[1]来索引nn.SpatialConvolution。如print(net.modules[1])得到:
nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3)
step6. 如果想更进一步,输出该层的参数,可以使用如下代码(实际上step4中已经输出了):
for k,curLayer in pairs(net.modules[]) do
if type(curLayer) ~= 'userdata' then
print(k,curLayer)
else
local strval = ' '
for i = , curLayer:dim() do
strval = strval .. curLayer:size(i) .. " "
end
print(k .. " " .. type(curLayer) .. " " .. string.format("\27[31m size: %s", strval))
end
end
step7. 得到的结果为:
dH 2
dW 2
nInputPlane 3
output userdata size:
kH 7
train false
gradBias userdata size: 64
padH 3
bias userdata size: 64
weight userdata size: 64 3 7 7
_type torch.DoubleTensor
gradWeight userdata size: 64 3 7 7
padW 3
nOutputPlane 64
kW 7
gradInput userdata size:
step8. 对于Inception层,step4中并没有完全显示出来。按照step5中的方式,使用net.modules[5]来得到Inception层。将step6进行更改,可输出:
outputSize {
1 : 128
2 : 32
}
inputSize 64
gradInput userdata size:
modules {
1 :
{
train : false
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 : {...}
2 : {...}
3 : {...}
4 : {...}
5 : {...}
6 : {...}
}
train : false
}
2 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 : {...}
2 : {...}
3 : {...}
4 : {...}
5 : {...}
6 : {...}
}
train : false
}
3 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 : {...}
2 : {...}
3 : {...}
4 : {...}
}
train : false
}
4 :
{
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
modules :
{
1 : {...}
2 : {...}
3 : {...}
}
train : false
}
}
dimension : 2
size : LongStorage - size: 0
}
}
kernelStride {
1 : 1
2 : 1
}
_type torch.DoubleTensor
module nn.DepthConcat {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
| (1): nn.SpatialConvolution(64 -> 96, 1x1)
| (2): nn.SpatialBatchNormalization
| (3): nn.ReLU
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1)
| (5): nn.SpatialBatchNormalization
| (6): nn.ReLU
| }
|`-> (2): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
| (1): nn.SpatialConvolution(64 -> 16, 1x1)
| (2): nn.SpatialBatchNormalization
| (3): nn.ReLU
| (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2)
| (5): nn.SpatialBatchNormalization
| (6): nn.ReLU
| }
|`-> (3): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> output]
| (1): nn.SpatialMaxPooling(3x3, 1,1, 1,1)
| (2): nn.SpatialConvolution(64 -> 32, 1x1)
| (3): nn.SpatialBatchNormalization
| (4): nn.ReLU
| }
|`-> (4): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.SpatialConvolution(64 -> 64, 1x1)
(2): nn.SpatialBatchNormalization
(3): nn.ReLU
}
... -> output
}
poolStride 1
padding true
reduceStride {}
transfer nn.ReLU
batchNorm true
train false
pool nn.SpatialMaxPooling(3x3, 1,1, 1,1)
poolSize 3
reduceSize {
1 : 96
2 : 16
3 : 32
4 : 64
}
kernelSize {
1 : 3
2 : 5
}
output userdata size:
step9. 在step8中,modules中为对应的inception各层(3*3卷积,5*5卷积,pooling,1*1reduce)。可通过net.modules[5].module来得到这些层。该层也有train,output,gradInput,modules等变量。可通过print(net.modules[5].module)来输出。
step10. 根据step5中的思路,可通过net.modules[5].module.modules[1]来得到3*3卷基层具体情况:
_type torch.DoubleTensor
output userdata size:
gradInput userdata size:
modules {
1 :
{
dH : 1
dW : 1
nInputPlane : 64
output : DoubleTensor - empty
kH : 1
train : false
gradBias : DoubleTensor - size: 96
padH : 0
bias : DoubleTensor - size: 96
weight : DoubleTensor - size: 96x64x1x1
_type : "torch.DoubleTensor"
gradWeight : DoubleTensor - size: 96x64x1x1
padW : 0
nOutputPlane : 96
kW : 1
gradInput : DoubleTensor - empty
}
2 :
{
gradBias : DoubleTensor - size: 96
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
running_var : DoubleTensor - size: 96
momentum : 0.1
gradWeight : DoubleTensor - size: 96
eps : 1e-05
_type : "torch.DoubleTensor"
affine : true
running_mean : DoubleTensor - size: 96
bias : DoubleTensor - size: 96
weight : DoubleTensor - size: 96
train : false
}
3 :
{
inplace : false
threshold : 0
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
train : false
val : 0
}
4 :
{
dH : 1
dW : 1
nInputPlane : 96
output : DoubleTensor - empty
kH : 3
train : false
gradBias : DoubleTensor - size: 128
padH : 1
bias : DoubleTensor - size: 128
weight : DoubleTensor - size: 128x96x3x3
_type : "torch.DoubleTensor"
gradWeight : DoubleTensor - size: 128x96x3x3
padW : 1
nOutputPlane : 128
kW : 3
gradInput : DoubleTensor - empty
}
5 :
{
gradBias : DoubleTensor - size: 128
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
running_var : DoubleTensor - size: 128
momentum : 0.1
gradWeight : DoubleTensor - size: 128
eps : 1e-05
_type : "torch.DoubleTensor"
affine : true
running_mean : DoubleTensor - size: 128
bias : DoubleTensor - size: 128
weight : DoubleTensor - size: 128
train : false
}
6 :
{
inplace : false
threshold : 0
_type : "torch.DoubleTensor"
output : DoubleTensor - empty
gradInput : DoubleTensor - empty
train : false
val : 0
}
}
train false
注意:此处有一个module和一个modules,具体不太明白。
step11. 可通过net.modules[5].module.modules[1].modules进一步查看该层的情况:
1 nn.SpatialConvolution(64 -> 96, 1x1)
2 nn.SpatialBatchNormalization
3 nn.ReLU
4 nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1)
5 nn.SpatialBatchNormalization
6 nn.ReLU
可见,该层包括1*1conv,BatchNorm,ReLU,3*3conv,BatchNorm,Relu这些。
step12. 若要查看step11中的3*3卷基层信息,可使用如下索引:
net.modules[5].module.modules[1].modules[4]
结果如下:
dH 1
dW 1
nInputPlane 96
output userdata size:
kH 3
train false
gradBias userdata size: 128
padH 1
bias userdata size: 128
weight userdata size: 128 96 3 3
_type torch.DoubleTensor
gradWeight userdata size: 128 96 3 3
padW 1
nOutputPlane 128
kW 3
gradInput userdata size:
step13. 到了step12,已经索引到了step1中网络的最深层。网络中每层均有input,output等。
step14. 对于net.modules[5]的Inception层,net.modules[5].output的结果和net.modules[5].module.output的结果是一样的,如(为方便显示,只显示了一小部分。如果输出net.modules[5].output,可能会有很多全为0的):
local imgBatch = torch.rand(,,,)
local infer = net:forward(imgBatch) print(net.modules[].output[][][])
print(net.modules[].module.output[][][])
结果为:
0.01 *
2.7396
2.9070
3.1895
1.5040
1.9784
4.0125
3.2874
3.3137
2.1326
2.3930
2.8170
3.5226
2.3162
2.7308
2.8511
2.5278
3.3325
3.0819
3.2826
3.5363
2.5749
2.8816
2.2393
2.4765
2.4803
3.2553
3.0837
3.1197
2.4632
1.5145
3.7101
2.1888
[torch.DoubleTensor of size 32] 0.01 *
2.7396
2.9070
3.1895
1.5040
1.9784
4.0125
3.2874
3.3137
2.1326
2.3930
2.8170
3.5226
2.3162
2.7308
2.8511
2.5278
3.3325
3.0819
3.2826
3.5363
2.5749
2.8816
2.2393
2.4765
2.4803
3.2553
3.0837
3.1197
2.4632
1.5145
3.7101
2.1888
[torch.DoubleTensor of size 32]
(原)torch中显示nn.Sequential()网络的详细情况的更多相关文章
- DB中耗时的 存储过程 及执行详细情况
SELECT a.object_id, a.database_id, OBJECT_NAME(object_id, database_id) 'proc name', a.cached_time, a ...
- 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...
- (原)torch中微调某层参数
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221664.html 参考网址: https://github.com/torch/nn/issues ...
- (原)ubuntu16在torch中使用caffe训练好的模型
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5783006.html 之前使用的是torch,由于其他人在caffe上面预训练了inception模型 ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
- ios 从网络上获取图片并在UIImageView中显示
ios 从网络上获取图片 -(UIImage *) getImageFromURL:(NSString *)fileURL { NSLog(@"执行图片下载函数"); UIIm ...
- torch.nn.Sequential()详解
参考:官方文档 源码 官方文档 nn.Sequential A sequential container. Modules will be added to it in the order th ...
- Pytorch——torch.nn.Sequential()详解
参考:官方文档 源码 官方文档 nn.Sequential A sequential container. Modules will be added to it in the order th ...
- (原)torch中threads的addjob函数使用方法
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6549452.html 参考网址: https://github.com/torch/threads#e ...
随机推荐
- nodejs安装过程及视频地址
说实话在安装的过程中遇到了很多问题,包括npm install connect出错,主要是我之前安装了0.10版本之后安装4.X版本造成的,后面卸载没有卸载完全造成的,后面也就好了,网上说了很多重新设 ...
- jquery mobile touch 实例
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- discuz3.2x增加邮箱验证功能
为防止垃圾用户多次注册,为disczu增加邮箱验证功能. 大致分为二步: 1.申请邮箱,这里推荐使用腾讯免费企业邮箱:https://exmail.qq.com/portal/introducefre ...
- Vi命令详解
Vi有三种模式,分别为命令行模式.一般模式和编辑模式.在命令行输入“Vi 文件名”,即可进入Vi.常用命令如下:一.一般模式翻页[Ctrl]+[f]: 向下翻一页,相当于[Page Down]按键.[ ...
- jQuery插件实现select下拉框左右选择_交换内容(multiselect2side)
效果图: 使用jQuery插件---multiselect2side做法: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitio ...
- JavaScript 系列笔记(一)数据类型
关于JS的数据类型 简单类型有五种:Undifined, Null, Boolean, Number, String 复杂类型有一种:Object 通过typeof 操作符来获取数据类型,此操作符返回 ...
- Python新手学习基础之运算符——比较运算符
比较运算符 比较运算符可以使用比较两个值,所有的内建类型都支持比较运算.当用运算符比较两个值时,结果是一个逻辑值,不是True,就是False. 有一点要注意的是,不同的类型的比较方式不一样,数字类型 ...
- [T]各种字符串Hash函数比较
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...
- android系统自带的Service原理与使用
1. 说明 android的后台运行在很多service,它们在系统启动时被SystemServer开启,支持系统的正常工作,比如 MountService监听是否有SD卡安装及移除,Clipboar ...
- VMware虚拟机相关文件问题
.vmx VM的配置文件 .vmdk VM的虚拟硬盘 .vmsd VM快照和相关联的vmdk的字典文件 .vswap 虚拟交换文件 .nvram 虚拟机的BIOS信息.VM会生成VMX, VMDK, ...