It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212

It turns out that the conjecture was false.

What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

题目大意:

Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:

9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212

但是这个推测是错误的。

最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?

//(Problem 46)Goldbach's other conjecture
// Completed on Fri, 26 Jul 2013, 16:58
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool issquare(int n) //判断一个自然数是否为一个平方数
{
if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
else return false;
} bool isprim(int n) //素数判断
{
for(int i=; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool judge(long long n)
{
int i=;
long long t;
while((t=(n-*(i*i)))>)
{
if(isprim(t)) return true;
i++;
}
return false;
} int main()
{
for(long long i=; i<; i=i+)
{
if(!isprim(i) && !judge(i))
{
printf("%lld\n",i);
break;
}
}
return ;
}
Answer:
5777

(Problem 46)Goldbach's other conjecture的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  7. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  8. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  9. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

随机推荐

  1. Effective C++ Item 36 绝不又一次定义继承而来的 non-virtual 函数

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie 经验:绝对不要又一次定义继承而来的 non-virtual 函数 --> Item 7 ...

  2. 【asp.net】将GridView数据导出Excel

    概要: 中午睡了一会,醒来的时候看到老师叫我去办公室,需求是这样的,把excel表中的每个同学,判断图片目录中是否有对应的照片(图片的名字用的学号或身份证号码) 没有对应图片的学生记录,存入自己的数据 ...

  3. linux杂记(十四)CAJ文档阅读方法

    关于Linux下看CAJ文档的方法 前言:由于大四狗要写各种各样的综述,看各种论文,关于知网为何没有PDF下载,关于为何知网没有CAJ阅读器for linux的种种蛋疼问题,都不要问我. 说回正题,网 ...

  4. Toast的替代者Snackbar

    在Android design support library中,SnackBar的使用: Part 2 – Welcome Snackbar, Goodbye Toast! BY PARESH MA ...

  5. Python中初始化的问题以及注释问题

    #coding=utf-8 # __author__ = 'minmin' from Tkinter import * #创建一个基于Frame的Application类 class Applicat ...

  6. 【转】Centos 设置IP地址的几种方式

    对于很多刚刚接触linux的朋友来说,如何设置linux系统的IP地址,作为第一步,下面小编以centos系统为例,给大家演示如何给centos设置IP地址,如何修改linux 系统IP地址? 查看I ...

  7. linux下查找文件、排序、查看文件内容

    本文介绍下,在linux系统中,查找文件的命令用法,以及按时间排序找到的目标文件的方法. 1.例如:查找当前目录下所有.ini文件,并按时间排序 示例: find ./  -name *.ini   ...

  8. 查看ORACLE 数据库及表信息

    -- 查看ORACLE 数据库中本用户下的所有表 SELECT table_name FROM user_tables; -- 查看ORACLE 数据库中所有用户下的所有表 select user,t ...

  9. Linux平台下使用rman进行oracle数据库迁移

        实验目的:将oracle数据库从一台机器迁移到另外的一台机器(同为linux平台),设置为不同的路径,不同的实例名 源端: ORACLE_BASE=/u01/app/oracle ORACLE ...

  10. JAVA并发,线程工厂及自定义线程池

    package com.xt.thinks21_2; import java.util.concurrent.ExecutorService; import java.util.concurrent. ...