It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212

It turns out that the conjecture was false.

What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

题目大意:

Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:

9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212

但是这个推测是错误的。

最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?

//(Problem 46)Goldbach's other conjecture
// Completed on Fri, 26 Jul 2013, 16:58
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool issquare(int n) //判断一个自然数是否为一个平方数
{
if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
else return false;
} bool isprim(int n) //素数判断
{
for(int i=; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool judge(long long n)
{
int i=;
long long t;
while((t=(n-*(i*i)))>)
{
if(isprim(t)) return true;
i++;
}
return false;
} int main()
{
for(long long i=; i<; i=i+)
{
if(!isprim(i) && !judge(i))
{
printf("%lld\n",i);
break;
}
}
return ;
}
Answer:
5777

(Problem 46)Goldbach's other conjecture的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  7. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  8. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  9. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

随机推荐

  1. ZOJ 3829 Known Notation (2014牡丹江H称号)

    主题链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5383 Known Notation Time Limit: 2 S ...

  2. DataReader转泛型

    实体类的字段类型要和数据库一致,不然可能会出现错误. /// <summary> /// DataReader转泛型 /// </summary> /// <typepa ...

  3. ZOJ 1563 Pearls(动态规划)

    /* 分析: 因为他给的数据是递增的 而求得是这些数据总的 最优解 所以我们可以考虑,它的子问题求解不影响总的求解 也就是我们可以先求出 第一个的最优解 第二个....以此类推到总的最优解 那么我们想 ...

  4. python 实现单链表

    #! /usr/bin/env python ### ### Linked List python implementation ### ### @reference Data Structures ...

  5. 根据用户的ID查用户的名字

    awk -F: '{if($3==0){print $1}}'  /etc/passwd

  6. C++学习之运算符重载的总结

    C++学习之运算符重载的总结              运算符重载是对已有的运算符赋予多重含义,使同一个运算符作用域不同类型的数据导致不同行为的发生,C++为运算符重载提供了一种方法,即运算符重载函数 ...

  7. C++之继承和动态内存分配

    C++之继承和动态内存分配         如果基类使用动态内存分配,并重新定义赋值和复制构造函数,这将如何影响派生类的实现呢?这取决于派生类的属性,如果派生类也使用动态内存分配,这将如何实现呢?这种 ...

  8. MarkDown使用 (一)

    MarkDown的数学公式输入 MarkDown的数学公式输入 1.如何插入公式 LaTeX的数学公式有两种:行中公式和独立公式.行中公式放在文中与其它文字混编,独立公式单独成行. 行中公式可以用如下 ...

  9. JQ兼容性问题

    checkbox操作 1:设置为选中状态   $(this).prop("checked", true); 2:判断是否选中     $(this).is(":check ...

  10. 《JavaScript+DOM编程艺术》的摘要(四)appendChild与insertBefore的区别

    基本知识点: // 1.js里面为什么要添加window.onload=function (){} // 保证html文档都加载完了,才开始运行js代码,以防html文档没有加载完,找不到相应的元素 ...