Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu

Submit Status

Description

In 'MonkeyLand', there is a traditional game called "Bamboo Climbing". The rules of the game are as follows:

1)       There are N monkeys who play this game and there are N bamboos of equal heights. Let the height be L meters.

2)       Each monkey stands in front of a bamboo and every monkey is assigned a different bamboo.

3)       When the whistle is blown, the monkeys start climbing the bamboos and they are not allowed to jump to a different bamboo throughout the game.

4)       Since they are monkeys, they usually climb by jumping. And in each jump, the ith monkey can jump exactly pi meters (pi is a prime). After a while when a monkey finds that he cannot jump because one more jump may get him out of the bamboo, he reports the remaining length ri that he is not able to cover.

5)       And before the game, each monkey is assigned a distinct pi.

6)       The monkey, who has the lowest ri, wins.

Now, the organizers have found all the information of the game last year, but unluckily they haven't found the height of the bamboo. To be more exact, they know N, all pi and corresponding ri, but notL. So, you came forward and found the task challenging and so, you want to find L, from the given information.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 12). Each of the next n lines contains two integers pi (1 < pi < 40, pi is a prime) and ri (0 < ri < pi). All pi will be distinct.

Output

For each case, print the case number and the minimum possible value of L that satisfies the above conditions. If there is no solution, print 'Impossible'.

Sample Input

2

3

5 4

7 6

11 3

4

2 1

3 2

5 3

7 1

Sample Output

Case 1: 69

Case 2: 113

题解:

用扩展GCD求;剩下的就是模版;

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
LL p[], r[];
void ex_gcd(LL a, LL b, LL &x, LL &y){
if(!b){
x = ;
y = ;
return;
}
ex_gcd(b, a%b, x, y);
LL temp = x;
x = y;
y = temp - a/b * y;
}
int main(){
int T, n, kase = ;
scanf("%d", &T);
while(T--){
scanf("%d", &n);
LL MOD = ;
for(int i = ; i < n; i++){
scanf("%lld%lld", &p[i], &r[i]);
MOD *= p[i];
}
LL x, y;
LL ans = ;
for(int i = ; i < n; i++){
ex_gcd(MOD/p[i], p[i], x, y);
ans = (ans + MOD/p[i]*x*r[i] + MOD) % MOD;
}
printf("Case %d: %lld\n",++kase, (ans + MOD) % MOD);
}
return ;
}

Monkey Tradition(中国剩余定理)的更多相关文章

  1. (light oj 1319) Monkey Tradition 中国剩余定理(CRT)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 In 'MonkeyLand', there is a traditional ...

  2. LightOJ 1319 Monkey Tradition(中国剩余定理)

    题目链接:https://vjudge.net/contest/28079#problem/U 题目大意:给你n(n<12)行,每行有pi,ri,求一个数ans满足ans%pi=ri(i从1~n ...

  3. Monkey Tradition---LightOj1319(中国剩余定理模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 题意:有 n 个猴子,n 棵树,树的高度为 L ,每个猴子刚开始的时候都在树的底 ...

  4. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  5. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  6. 51nod1079(中国剩余定理)

    题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687 题意: 中文题诶~ 思路: 本题就是个中国剩余定理模板题,不过模拟也可以过 ...

  7. HDU 5446 中国剩余定理+lucas

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  8. poj1006生理周期(中国剩余定理)

    /* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...

  9. poj 1006:Biorhythms(水题,经典题,中国剩余定理)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 110991   Accepted: 34541 Des ...

随机推荐

  1. [置顶] IOS7状态栏StatusBar官方标准适配方法

    IOS7状态栏StatusBar官方标准适配方法 hello,大家好,ios7正式版已经发布,相信大家都在以各种方式来适配ios7. 如果你已经下载了xcode5,正准备使用,你会发现各种布局的改变. ...

  2. [AngularJS] Angular 1.5 multiple transclude

    If you know ui-router, multi-transclude should be easy for you also. In previou Angular version < ...

  3. AIX 常用命令和知识

      BOOTLIST:#bootlist -m normal -o (查看bootlist)#bootlist -m normal (设置bootlist为空,谁要在我机器上执行我就要哭了)#boot ...

  4. <经验杂谈>C#/.Net字符串操作方法小结

    字符串操作是C#中最基本的.最常见的.也是用的最多的,以下我总结 了几种常见的方法 1.把字符串按照分隔符转换成 List /// <summary> /// 把字符串按照分隔符转换成 L ...

  5. 理解SQL SERVER中的分区表(转)

    简介 分区表是在SQL SERVER2005之后的版本引入的特性.这个特性允许把逻辑上的一个表在物理上分为很多部分.而对于SQL SERVER2005之前版本,所谓的分区表仅仅是分布式视图,也就是多个 ...

  6. weblogic开机启动-超简单

    1.编写weblogic启动脚本,命名为start_weblogic_server.sh,内容如下:  #!/bin/bashnohup /home/weblogic/Oracle/Middlewar ...

  7. ORACLE SQL单行函数(二)【weber出品必属精品】

    11.dual:虚表,任何用户都可以使用,表结构如下: SQL> desc dual Name Null? Type -------------------------------------- ...

  8. MySql函数应用

    -- 当前时间 now(); -- 查询结果串联(逗号) select group_concat(col_name) from table_name;

  9. Qt将表格table保存为excel(odbc方式)

    首先是保存excel的方法,可参照: http://dzmlmszp.blog.163.com/blog/static/179271962014819111812531/ ok,进入正题. 现在我有一 ...

  10. 怎样利用putty登陆SSH主机方法

    PuTTY 是一套免费的SSH / Telnet 程序,是在Windows 32平台下的telnet.rlogin和ssh客户端,它是一个跨平台的远程登录工具 下载putty成功后,双击打开Putty ...