FZU1862(线段树 或者 DP)
Problem 1862 QueryProblem Accept: 100 Submit: 249
Time Limit: 2000 mSec Memory Limit : 32768 KB
Problem Description
are N numbers (non-negative integers) in a circle. Now your task is
quite simple, just tell me the largest number between L and R.
The Figure 1 is a sample of five integers in a circle. (marked with their index, but not their exact value.)
Figure 1.The Figure 2,3 show how we count the number.

Figure 2.

Figure 3.
Input
There are no more than 10 test cases;
For each case, the first line contains only one integer N, indicates the size of the circle.
The following one line contains N non-negative integers where Mi
indicates the i-th integers whose index is i. (1 <= N <= 1000, 1
<= i <= N, 0 <= Mi <= 10^9)
Then one line contains Q indicates the number of querys. (1 <= Q <= 10^5)
Then the next Q lines, each line contains only two integers indicate L and R (1 <= L,R <= N)
Output
For each case, please output “Case #index:” in a single line, here index is the case index starts from one.
For each query just output a single line indicates the largest number between L and R.
Output a blank line after each case.
Sample Input
3 8
3
1 1
1 2
2 1
1
9
1
1 1
Sample Output
3
8
8
Case #2:
9
Hint
Huge Input, please “scanf” to avoid time limit exceed.
题意:在给定的区间中查询最大的数。当L>R时,R =R +n 来改变R这也是2*n的原因;
方法1:线段树
收获:函数中的num指的是线段树上的编号,而当le == ri时,le 或 ri指的是最低层的编号。
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
using namespace std; const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
#define maxn 8006
int tre[maxn];
int a[maxn/];
int n;
void build(int num, int le, int ri)
{
if(le == ri)
{
if(le > n)
tre[num] = a[le-n];//函数中的num指的是线段树上的编号,而当le == ri时,le 或 ri指的是最低层的编号。
else
tre[num] = a[le];
return;
}
int mid = (le + ri)/;
build(num*, le, mid);
build(num*+, mid+, ri);
tre[num] = max(tre[num*], tre[num*+]);
}
int query(int num,int le,int ri,int x,int y)
{
if(x<=le&&y>=ri)
return tre[num];
int mid=(le+ri)/;
int ans=;
if(x<=mid)
ans=max(ans,query(num*,le,mid,x,y)); //先查询左边
if(y>mid)
ans=max(ans,query(num*+,mid+,ri,x,y)); //再查询右边
return ans;
}
int main()
{
int cas = ;
while(~scanf("%d", &n))
{
for(int i = ; i <= n; i++)
scanf("%d", &a[i]);
build(, , *n);
int m;
scanf("%d", &m);
int a, b;
printf("Case #%d:\n", cas++);
for(int j = ; j < m; j++)
{
scanf("%d%d", &a, &b);
if(b < a)
b = b + n;
printf("%d\n", query(, , *n, a, b));
}
puts("");
}
}
方法2:DP
收获:对dp有了更多的了解。
dp[i][j]指的是i到j这个区间内保存的最大值。
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
#define C 0.57721566490153286060651209
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 using namespace std; typedef long long LL;
const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0); const int maxn=;
int dp[][];
int a[];
int main()
{
int n, b;
int sum=;
while(~scanf("%d", &n))
{
for(int i = ; i <= n; i++)
{
scanf("%d", &b);
a[i]=a[i+n]=b;
}
for(int i = ; i <=*n; i++)
{
dp[i][i]=a[i];
for(int j=i+;j<=*n;j++)
{
if(a[j]>dp[i][j-])
dp[i][j]=a[j];
else
dp[i][j]=dp[i][j-];
}
}
int m;
scanf("%d", &m);
int L, R;
printf("Case #%d:\n",++sum);
for(int i=;i<=m;i++)
{
int q,w;
scanf("%d%d",&q,&w);
if(w<q)
w=w+n;
printf("%d\n",dp[q][w]);
}
puts("");
}
return ;
}
FZU1862(线段树 或者 DP)的更多相关文章
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- 2018.09.12 poj2376Cleaning Shifts(线段树+简单dp)
传送门 貌似贪心能过啊%%%. 本蒟蒻写的线段树优化dp. 式子很好推啊. f[i]表示覆盖1~i所需的最小代价. 那么显然对于一个区间[li,ri]" role="present ...
- 2018.07.08 hdu4521 小明系列问题——小明序列(线段树+简单dp)
小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Proble ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- Codeforces 834D The Bakery 【线段树优化DP】*
Codeforces 834D The Bakery LINK 题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献 是第一次做线段树维护DP值的题 感觉还可以, ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
随机推荐
- SICP 练习 1.3
(define (sum a b) (+ a b)) (define (sum-two a b c) ( cond ((and (> (sum a b) (sum a c)) (> (su ...
- iOS程序员对算法的要求
算法和数据结构(鉴于二者的关联,以下统称算法),对于程序员的重要性一直是个具有争议性的话题.有一些程序员内心对算法有着天然的排斥,面试当中一旦考察算法知识,会被不少程序员吐槽,但有部分公司又一直在坚持 ...
- 关于 linux ssh 的配置.
一.禁止root用户远程登录: # cd /etc/ssh # vi sshd_config 将 permitRootLogin 后面的值改成 no 如下图: 然后再重启sshd服务即可,如下: # ...
- js如何关闭当前页,而不弹出提示框
//关闭当前页面,并且打开新页面,(不提示) function closeWinAndOpen(url) { //利用随机数处理WinName var sWinName = "LR" ...
- flex 调用WebService2(基于.net)
flex 访问WebService的方法有很多种,使用FLEX4中的"数据/服务"功能可以自动生成访问WebService的代理类,这样可以避免把所有的数据访问都写到MXML页面上 ...
- zoj Grouping(强连通+缩点+关键路径)
题意: 给你N个人,M条年龄大小的关系,现在打算把这些人分成不同的集合,使得每个集合的任意两个人之间的年龄是不可比的.问你最小的集合数是多少? 分析: 首先,假设有一个环,那么这个环中的任意两个点之间 ...
- JDK,TomCat安装配置
JDK.Tomcat.myEclipse安装配置 准备安装包 JAVA运行环境包 JDK1.7下载地址: http://www.veryhuo.com/down/html/43205.html Jsp ...
- php 查看文档
http://www.runoob.com/php/php-datatypes.html php 学习网站 : http://www.phpfans.net/
- PHP 中 AJAX 中文乱码解决
最近,在用PHP做一个AJAX功能时,出现了中文乱码.在网上搜索了一上,很多是有说不过试过都不行,我页面的的编码是UTF-8的,MYSQL中也是UTF-8的.以前在.NET中也遇到这样的问题,但只是在 ...
- Windows安装TensorFlow-Docker Installation of TensorFlow on Windows
TensorFlow是Google开发的进行Deep Learning的包,目前只是支持在Linux和OSX上运行.不过这个秋季或许就有支持Windows的版本出现了,那么对于使用Windows的开发 ...