Making the Grade
给定长度为n的序列\(\{a_i\}\),求构造长度为n的递增序列\(\{b_i\}\),求\(\sum_{i=1}^n|a_i-b_i|\)最小值,\(1 ≤ N ≤ 2,000\)。
解
首先空间与时间不支持你表现\(b_i\)填什么,于是猜测\(b_i\)必然填的为\(a_i\)里的数。
证明:
显然填到第1个数满足条件,
假设前i-1个数满足条件,且为最优解。
考虑现在填到第i个数,如果\(a_i\geq b_{i-1}\),我们可以令\(b_i=a_i\)。
而如果\(a_i<b_{i-1}\),要么是\(b_i=b_{i-1}\)更优,要么得把\(b_i\)下调到x,同理前面的数也要下调,而此时必然有一段数\(b_i\)是等于x,因为如果还可以下调达到更优,之前就可以这么做了,而这一段达到最优可以是这一段对应的\(a_i\)的中位数,所以无论如何,都满足题意,故成立。
法一:
考虑到\(b_i\)中含有\(a_i\)的段性,故设\(f_i\)表示考虑到\(b_i\),且\(b_i=a_i\)的所求最小值,设\(cost(j+1,i-1)\)表示i,j间填左边填一段\(a_j\),右边填一段\(a_i\)的最小值,于是我们有
\]
边界:\(f_0=0\)其余无限大
答案:\(\min_{i=1}^n(f_i+\sum_{j=i+1}^n|a_j-a_i|)\)
至于cost如何求,你只要维护分别维护只填\(a_i\)或者\(a_j\)前缀和,枚举中间点转移即可,最终时间复杂度\(O(n^3)\)。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define intmax 0x7fffffff
using namespace std;
int A[2001],dp[2001],sl[2001],
sr[2001];
il void read(int&);
template<class free>il free Abs(free);
template<class free>il free Min(free,free);
int main(){
int n,i,j,k,l,ans(intmax);
memset(dp,66,sizeof(dp));
read(n),dp[1]=0;for(i=1;i<=n;++i){
read(A[i]);
for(j=1;j<i;++j){
if(A[j]>A[i])continue;
sl[j]=sr[j]=0,l=intmax;
for(k=j+1;k<i;++k)sl[k]=sl[k-1]+Abs(A[k]-A[j]);
for(k=j+1;k<i;++k)sr[k]=sr[k-1]+Abs(A[k]-A[i]);
for(k=j;k<i;++k)
l=Min(l,sl[k]-sl[j]+sr[i-1]-sr[k]);
dp[i]=Min(dp[i],dp[j]+l);
}
}
for(i=1;i<=n;++i){
j&=0;
for(k=i+1;k<=n;++k)
j+=Abs(A[k]-A[i]);
ans=Min(ans,j+dp[i]);
}printf("%d",ans);
return 0;
}
template<class free>
il free Min(free a,free b){
return a<b?a:b;
}
template<class free>
il free Abs(free x){
return x<0?-x:x;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}
法二:
最直接的感觉是要想维护递增,我必然要表现出这里填什么,预处理\(c_i\)为\(a_i\)从小到大的数组,于是设\(f[i][j]\)表示处理到\(b_i\),这里令\(b_i=c_j\)的最小值,于是我们有
\]
根据策略集合,显然这里可以维护前缀小,于是可以优化到\(O(n^2)\)。
参考代码
#include <functional>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define il inline
#define ri register
#define intmax 0x7fffffff
using namespace std;
int A[2001],B[2001],
dp[2001][2001],opt[2001];
il void read(int&);
template<class free>
il free Abs(free);
template<class free>
il free Min(free,free);
int main(){
int n,i,j;read(n);
for(i=1;i<=n;++i)read(A[i]),B[i]=A[i];
sort(B+1,B+n+1);
for(i=1;i<=n;++i){
for(j=1;j<=n;++j)
dp[i][j]=Abs(A[i]-B[j])+opt[j];
opt[1]=dp[i][1];
for(j=2;j<=n;++j)opt[j]=Min(opt[j-1],dp[i][j]);
}int ans(intmax);
for(i=1;i<=n;++i)ans=Min(ans,dp[n][i]);
sort(B+1,B+n+1,greater<int>());
for(i=1;i<=n;++i){
for(j=1;j<=n;++j)
dp[i][j]=Abs(A[i]-B[j])+opt[j];
opt[1]=dp[i][1];
for(j=2;j<=n;++j)opt[j]=Min(opt[j-1],dp[i][j]);
}for(i=1;i<=n;++i)ans=Min(ans,dp[n][i]);
printf("%d",ans);
return 0;
}
template<class free>
il free Min(free a,free b){
return a<b?a:b;
}
template<class free>
il free Abs(free x){
return x<0?-x:x;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}
法三:
注意到绝对值解的移动性,故可以维护一个大根堆,如果加进去的数比大于等于堆顶,不管,如果小的话,就把这个数两次加进堆,ans累加堆顶-该数,再弹掉堆顶。
证明先放一放。
参考代码:
#include <iostream>
#include <cstdio>
#include <queue>
#include <vector>
#include <functional>
#define il inline
#define ri register
using namespace std;
priority_queue<int,vector<int>,less<int> >s;
priority_queue<int,vector<int>,greater<int> >b;
il void read(int&);
int main(){
int n,i,a;read(n);
int ans1(0),ans2(0);
read(a),s.push(a),b.push(a);
for(i=2;i<=n;++i){
read(a),s.push(a),b.push(a);
if(a<s.top())ans1+=s.top()-a,s.pop(),s.push(a);
if(a>b.top())ans2+=a-b.top(),b.pop(),b.push(a);
}printf("%d",ans1>ans2?ans2:ans1);
return 0;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}
于是我们可以得到结论,递推随着状态优化,又可以转移时优化,但贪心显然排除了太多无用的状态,故是最好的优化方式。
Making the Grade的更多相关文章
- kaungbin_DP S (POJ 3666) Making the Grade
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- POJ 3666 Making the Grade
Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...
- CF719C. Efim and Strange Grade[DP]
C. Efim and Strange Grade time limit per test 1 second memory limit per test 256 megabytes input sta ...
- POJ3666Making the Grade[DP 离散化 LIS相关]
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6445 Accepted: 2994 ...
- [CareerCup] 15.7 Student Grade 学生成绩
15.7 Imagine a simple database storing information for students' grades. Design what this database m ...
- 英语语法 It all started the summer before second grade when our moving van pulled into her neighborhood
It all started the summer before second grade when our moving van pulled into herneighborhood It all ...
- FPGA speed grade
Altera的-6.-7.-8速度等级逆向排序,Xilinx速度等级正向排序. 不很严密地说,“序号越低,速度等级越高”这是Altera FPGA的排序方法, “序号越高,速度等级也越高”这是Xili ...
- HDU 5038 Grade(分级)
Description 题目描述 Ted is a employee of Always Cook Mushroom (ACM). His boss Matt gives him a pack of ...
- hdu---(5038)Grade(胡搞)
Grade Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Sub ...
- A-Making the Grade(POJ 3666)
Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4656 Accepted: 2206 ...
随机推荐
- topjui.core.js
var defaultConfig = { pageLoadComplete: false, config: { ctx: "", mainPage: false, pkName: ...
- 拾遗:{rpm、yum及源码方式管理软件包}
一.yum配置文件位置 /etc/yum.conf /etc/yum.repos.d/*.repo 二.yum常用命令 install pkgs reinstall pkgs update pkgs ...
- 剑指offer——06二叉树的下一个节点
题目描述 给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 题目的意思是,在一颗二叉树的中序遍历中,给出其中一 ...
- tensorflow 训练的时候loss=nan
出现loss为nan 可能是使用了relu激活函数,导致的.因为在负半轴上输出都是0
- java通过传送地址获取坐标
package com.action; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputS ...
- WinCE下的第二个窗口程序
MFC写的,有些简陋,但是还是感觉不错,一个小小的计算器,各个方面的功能都完成了 但是唯独那个CEdit里面的文字不能右对齐.那个扩展风格用不了
- C# interface (接口基础知识详解)
Interface(接口) (本文转载地址:http://blog.sina.com.cn/s/blog_574c993d0100d59n.html) 介绍:C#中的接口提供了一种实现运行时的多态.通 ...
- 1分钟k线图能反映什么?(转)
对于投资者特别是短线操作者来讲,应该重视1分钟K线图,但是并不是所有的股票都能通过1分钟K线图看出名堂来,比如一些小盘股,盘子较轻,很容易上蹿下跳.仅用1分钟K线图分析其上证指数,很难研判大盘当日的高 ...
- ps -aux|grep mysql时候报错:Warning: bad syntax, perhaps a bogus '-'? See /usr/share/doc/procps-3.2.8/FAQ
ps -aux|grep mysql时候报错:Warning: bad syntax, perhaps a bogus '-'? See /usr/share/doc/procps-3.2.8/FAQ ...
- 如何使用webpack 打包图片
最近在学习vue,需要用到webpack打包css,在webpack中文网https://www.webpackjs.com/里只有css的打包配置, 在编写css样式时,因为要引入 背景图片,打包时 ...