每一种数据存储系统,对应有一种存储模型,或者叫存储引擎。我们今天要介绍的是三种比较流行的存储模型,分别是:

  1. Hash存储模型
  2. B-Tree存储模型
  3. LSM存储模型

不同存储模型的应用情况

1、Hash存储模型

  • redis
  • memcache

2、B-Tree存储模型

  • MySQL(以及大多数的关系型数据库)
  • MongoDB

3、LSM树存储模型

  • HBase
  • RocksDB

不同存储模型介绍

1、Hash存储模型

Hash存储模型其实就是HashMap(哈希表)的持久化实现。这种模型的特点是与HashMap有密切关系的。我们知道HashMap可以支持:put(key)增加/修改、delete(key)删除、get(key)随机获取操作,但是HashMap不支持get(1)这样的操作。因为HashMap是无序的,不支持顺序扫描。针对put、get操作,它的时间复杂度是O(1),也就是说读写速度都很快,所以针对单个Key的操作是非常快速的。如果我们在应用中无需遍历数据,Hash引擎是非常合适的。

首先,通过key,找到对应的文件编号。这个检索的过程,是通过HashMap来实现的。

其次,通过文件编号找到存储中的文件

再者,通过value长度和位置找到对应的行数据

最后,读取出value内容

2、B-Tree存储模型

B-Tree存储模型由于是树状结构存储,所以,它是不支持随机读写的。就像我们学习二叉树时,查找数据得通过遍历树的方式来查找数据。

上图是一种典型的B-Tree存储索引。叶子节点保存了每行的完整数据,非叶子节点保存了索引信息。数据在每个节点都是有序存储的,但查询数据的时候,需要从根节点遍历,然后根据二分查找直到找到叶子节点。如果数据不再内存中,需要从磁盘中读取,并加载到缓存。B+树的根节点是常驻内存的,最多需要h-1次磁盘IO,复杂度为O(h) = O(logdN)。修改操作首先要记录提交日志,然后在修改内存中的B+树。

3、LSM树存储引擎

LSM树的思想很容易理解,就是将数据的新增、修改增量数据先保存在内存中,到达指定的大小限制后将修改操作批量写入到磁盘。读取时,需要合并磁盘中的历史数据和内存中最近的修改操作。LSM的优势在于有效地随机写入问题,但读取可能需要访问较多的磁盘文件。

  • Level 0 :日志/内存
    • 先写入预写日志,再写内存
    • 写入日志是为了保障可用性
  • Level 1:日志/内存,当Level 0写入达到阈值,通过异步方式将部分数据刷写到硬盘上
  • Level 2:合并,由于不断刷写会产生大量小文件,这样不利于管理和查询。需要在合适的时机启动一个异步线程进行合并操作生成一个大文件

Hash存储模型、B-Tree存储模型、LSM存储模型介绍的更多相关文章

  1. LSM存储模型

    LSM存储模型 数据库有3种基本的存储引擎: 哈希表,支持增.删.改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统.对于key-value的插入以及查询,哈希表的复杂度 ...

  2. 有关从经典部署模型迁移到 Azure Resource Manager 部署模型的常见问题

    此迁移计划是否影响 Azure 虚拟机上运行的任何现有服务或应用程序? 不可以. VM(经典)是公开上市的完全受支持的服务. 你可以继续使用这些资源来拓展你在 Azure 上的足迹. 如果我近期不打算 ...

  3. 使用 Azure CLI 将 IaaS 资源从经典部署模型迁移到 Azure Resource Manager 部署模型

    以下步骤演示如何使用 Azure 命令行接口 (CLI) 命令将基础结构即服务 (IaaS) 资源从经典部署模型迁移到 Azure Resource Manager 部署模型. 本文中的操作需要 Az ...

  4. [转帖]influxdb和boltDB简介——MVCC+B+树,Go写成,Bolt类似于LMDB,这个被认为是在现代kye/value存储中最好的,influxdb后端存储有LevelDB换成了BoltDB

    influxdb和boltDB简介——MVCC+B+树,Go写成,Bolt类似于LMDB,这个被认为是在现代kye/value存储中最好的,influxdb后端存储有LevelDB换成了BoltDB ...

  5. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

  6. Entity Framework 6 Recipes 2nd Edition(11-4)译 -> 在”模型定义”函数里调用另一个”模型定义”函数

    11-4.在”模型定义”函数里调用另一个”模型定义”函数 问题 想要用一个”模型定义”函数去实现另一个”模型定义”函数 解决方案 假设我们已有一个公司合伙人关系连同它们的结构模型,如Figure 11 ...

  7. 生成模型(Generative Model)与判别模型(Discriminative Model)

    摘要: 1.定义 2.常见算法 3.特性 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标 ...

  8. DL4NLP——词表示模型(二)基于神经网络的模型:NPLM;word2vec(CBOW/Skip-gram)

    本文简述了以下内容: 神经概率语言模型NPLM,训练语言模型并同时得到词表示 word2vec:CBOW / Skip-gram,直接以得到词表示为目标的模型 (一)原始CBOW(Continuous ...

  9. 『高性能模型』Roofline Model与深度学习模型的性能分析

    转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等 ...

随机推荐

  1. mongo 查询 距离 某个点 多少 米距离 感谢 提供的数据。 感谢 mvc的 demo 。反正 就是各种感谢 文档之类的。

    昨天 去面试来着, 问了一下mong . 我记得mong支持 地理位置索引的,说了一下. 然后 面试官说 查询某个点 的 多少米范围, 这个该怎么实现? 我懵逼了.... 回去 查询了一下. 发现有 ...

  2. c#数字图像处理(六)直方图均衡化

    直方图均衡化又称直方图修平,是一种很重要的非线性点运算.使用该方法可以加强图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候.通过这种方法,亮度可以更好的在直方图上分布. 直方图均衡化的基 ...

  3. CSS-05-伪类及伪元素选择器

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. javascript的对象、类和方法

    1.类和对象的概念: 1.所有的事物都是一个对象,而类就是具有相同属性和行为方法的事物的集合 2.在JavaScript中建立对象的目的就是将所有的具有相同属性的行为的代码整合到一起,方便使用者的管理 ...

  5. Flask接口返回JSON格式数据自动解析

    一 自定义一个response类 from flask import Response, jsonify # 定义response返回类,自动解析json class JSONResponse(Res ...

  6. 1、OSI参考模型

    网络的层次模型:Core layer (核心层):高速转发,不建议做策略  Distribution layer (分布层,汇聚层):基于策略连接(路由控制,安全策略)Access layer (接入 ...

  7. java核心技术----Object类

    package java.lang; /** * Class {@code Object} is the root of the class hierarchy. * Every class has ...

  8. MySql新版本安装配置

    版本:mysql-5.7.16-winx64 平台Windows 7 x64 1.进入mysql主目录(建议将其移到C或D盘的根目录,并改名为mysql) 2.配置path环境变量(如D:\JAVA\ ...

  9. 每日一练PAT_B_PRAC_1005斐波那契凤尾

    NowCoder号称自己已经记住了1-100000之间所有的斐波那契数.为了考验他,我们随便出一个数n,让他说出第n个斐波那契数.当然,斐波那契数会很大.因此,如果第n个斐波那契数不到6位,则说出该数 ...

  10. python学习--quote()函数

    屏蔽特殊的字符.比如如果url里面的空格!url里面是不允许出现空格的. 在 Python2.x 中的用法是:urllib.quote(text)Python3.x 中是urllib.parse.qu ...