http://www.csmining.org/cdmc2016/

Data Mining Tasks Description

Task 1: 2016 e-News categorisation

For this year, the dataset is sourced from 6 online news media:

The New Zealand Herald (www.nzherald.co.nz), Reuters(www.reuters.com), The Times (www.timesonline.co.uk) , Yahoo News (news.yahoo.com), BBC (www.bbc.co.uk) and The Press (www.stuff.co.nz).

Business, entertainment, sport, technology, and travel are the selected five news categories. Each document of the dataset is labelled manually by skimming over the text and determining the category. In the provided data files, each news piece is formatted as one line pure text with the last character as the class label (for training data), and we removed all punctuations and symbols during the data formation.

Note that; the dataset text is encrypted for fair play purpose, and this task is not aiming for decryption practices. So any uses of such technique are prohibited and should be avoided in your methods used for competition. Any participants alleged with this misconduct will be declared void results.

The statistical information of the training dataset is summarised as below:

Topic No. of News
Business 361
Entertainment 343
Sport 363
Technology 356
Travel 362

Task 2: UniteCloud Operation Log for Anomaly Detection

UniteCloud is a resilient private Cloud infrastructure created in New Zealand Unitec Institute of Technology using OpenNebula for cloud orchestration and KVM for virtualization.

This dataset is the operational data that captured from real-time running UniteCloud server with a sample period of 1-minute interval. There are 243 features for each sample, which correspond to operational measurements of 243 sensors from the UniteCloud servers. The file is labelled accordingly by anomalous events and anomaly category determination over the collected log data. In the supplied training dataset, we provide 57,654 samples, with 243 sensor operation values for each sample, and the non-zero labels in the last column indicate the seven anomalous events.

The goal of this task is to identify various abnormal events accurately from ranges of sensor log files without high computational costs.

The statistical information of this dataset is summarized as:

No. of Sample No. of Features No. of Classes

No. of Training

No. of Testing

82,363 243 8 57,654 24,709

Task 3: Android Malware Classification

This dataset is created from a set of APK (application package) files collected from the Opera Mobile Store over the period of January to September of 2014. Just like Windows (PC) systems use an .exe file for installing software,Android use APK files for installing software on the Android operating system.

The permission system is applied as a measure to restrict access to privileged system resources and is considered as the first barrier to malware. Application developers have to explicitly declare the permissions in the AndroidManifest.xml file contained in the APK. All official Android permissions are categorized into four types: Normal, Dangerous, Signature and SignatureOrSystem. As dangerous permissions have access to restricted resources and can have a negative impact if used incorrectly, they require user’s approval at installation.

To be taken as the input of a machine-learning algorithm, permissions are commonly coded as binary variables i.e., an element in the vector could only take on two values: 1 for a requested permission and 0 otherwise. The number of all possible Android permissions varies based on the version of the OS. In this task, for each APK file under consideration, we provide a list of permissions declared in its AndoridManifest.xml file. The class label of the APK file -- +1 if it is regarded as malicious and -1 otherwise -- is determined by the detection results of security appliances hosted by VirusTotal. Note that adware was not counted as malware in our setting. The participants of CDMC 2016 competition are invited to design a classifier that could best match this result.

The statistical information of the dataset is summarized as:

No. of APK files No. of Permissions No. of Classes No. of Training No. of Testing
61,730 up to 583 2 30,920 30,810

Also, the MD5 hash is provided if you may need for checksum:
CDMC2016_AndroidPermissions.Train, md5(473f64d9e650e82325b1ce0216cc50c9)
CDMC2016_AndroidLabels.Train, md5(784b2ce7da61ff2935dca770c4bcbfb3)
CDMC2016_AndroidPermissions.Test, md5(192c70a8489c41fa95f5b95732fcdfb1)

cdmc2016数据挖掘竞赛题目Android Malware Classification的更多相关文章

  1. CIKM Competition数据挖掘竞赛夺冠算法陈运文

    CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是Intern ...

  2. Deep Android Malware Detection小结

    题目:Deep Android Malware Detection 作者:Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang 年份:2 ...

  3. Kaggle "Microsoft Malware Classification Challenge"——就是沙箱恶意文件识别,有 Opcode n-gram特征 ASM文件图像纹理特征 还有基于图聚类方法

    使用图聚类方法:Malware Classification using Graph Clustering 见 https://github.com/rahulp0491/Malware-Classi ...

  4. 数据挖掘竞赛kaggle初战——泰坦尼克号生还预测

    1.题目 这道题目的地址在https://www.kaggle.com/c/titanic,题目要求大致是给出一部分泰坦尼克号乘船人员的信息与最后生还情况,利用这些数据,使用机器学习的算法,来分析预测 ...

  5. kaggle数据挖掘竞赛初步--Titanic<派生属性&维归约>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  6. Android Malware Analysis

    A friend of mine asked me help him to examine his Android 5.0 smartphone. He did not say what's wron ...

  7. kaggle数据挖掘竞赛初步--Titanic<随机森林&特征重要性>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  8. kaggle数据挖掘竞赛初步--Titanic<数据变换>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  9. kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>

    Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...

随机推荐

  1. mac pro 1.5T内存是如何实现的

    苹果发布全新Mac Pro:28核1.5T内存 预计售价10万+ 看到这样的新闻标题是不是很震撼,甚至怀疑人生,64位机怎么就可以1.5T内存了,自己的系统盘都没那么大 而且我们知道windows下的 ...

  2. JS判断PC 手机端显示不同的内容

    方法一: function goPAGE() { if ((navigator.userAgent.match(/(phone|pad|pod|iPhone|iPod|ios|iPad|Android ...

  3. 对象无法注册到Spring容器中,手动从spring容器中拿到我们需要的对象

    当前对象没有注册到spring容器中,此时无法new object()  的方式创建对象,否则所有@Autowired 注入的对象都为null; 处理方式: 手动创建一个类@Component注册到S ...

  4. NodeJS基础之Express路由和中间件

    路由 路由是指如何定义应用的端点(URIs)以及如何响应客户端的请求. 路由是由一个 URI.HTTP 请求(GET.POST等)和若干个句柄组成,它的结构如下: app.method(path, [ ...

  5. oracle-ORA-27102错误

    out of memory HP-UX Error: 12: Not enough space ORA-30019: Illegal rollback Segment operation in Aut ...

  6. ListView组件中 onEndReached 方法在滚动到距离列表最底部一半时执行

    初次使用ListView,在写列表滚动到最底部自动加载使用到方法onEndReached, 发现: ListView组件中 onEndReached 方法在滚动到距离列表最底部一半时执行, 于是翻看文 ...

  7. AtCoder Regular Contest 084 C - Snuke Festival【二分】

    C - Snuke Festival ....最后想到了,可是不应该枚举a[],这样要二重循环,而应该枚举b[],这样只需一重循环... #include<iostream> #inclu ...

  8. zabbix源码编译安装以及添加第一台host监控

    基础准备 硬件需求 数据库需求   软件需求 其他软件需求 安装 安装方式 source code 编译好的二进制包 rpm或者deb 源码编译安装部署zabbix以及附件 前提准备 最小化安装操作系 ...

  9. OpenCV在各版本上的安装教程

    目录 使用pip安装OpenCV 安装Python版的OpenCV 4 安装Python版的OpenCV 3 在OSX和 macOS上安装OpenCV 3 在Ubuntu上安装Python版的Open ...

  10. 通过JS操作CSS

    动态效果如图所示: 第一种实现方法: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...