@noi.ac - 443@ 老头子的话
@description@
老头子是小学校长,小学生(大哥)们都很听老头子的话。一天,老头子给小学生(大哥)们发苹果吃。
一共有 n 个小学生(大哥),老头子每一次会等概率选择一位小学生(大哥)并给他一个苹果。一个小学生(大哥)变得开心当且仅当他拥有的苹果数 ≥k。
因为老头子年纪大了,所以他想要你告诉他,期望多少次之后所有的小学生(大哥)都变得开心。
假设答案的最简分数形式为 a/b,你需要求出 w,满足 a≡b⋅w mod 998244353,且 0≤w<998244353。
Input format
一行两个数 n,k。
Output format
一行一个数表示答案。
Sample input
1 1
Sample output
1
Constraints
对于所有的数据,n≤50,k≤1000。
@solution@
uoj#449. 【集训队作业2018】喂鸽子
你可以通过搜索上面那道题的题解完成此题。
嗯好我们进入正题。首先一眼 min-max 容斥。问题转化 n 个人中选,前 m 个人第一个拥有苹果数 ≥ k 的期望次数。
假如我们知道在 m 个人中选,第一个拥有苹果数 ≥ k 的期望次数为 f[m]。则 n 个人中选,前 m 个人第一个拥有苹果数 ≥ k 的期望次数为 f[m]*n/m。
为什么?因为期望等于概率的倒数!有恰当的正确性证明,只是我概率论学得不好。
考虑怎么求解 f[m] 。我们假设如果出现拥有苹果数 ≥ k 的事件后,强制结束操作。
设在发第 i 个苹果之前,操作还未结束的概率为 p[m][i];设发了 i 个苹果,还是没有结束的方案数(即没有一个人的苹果数 ≥ k)为 g[m][i];设发了 i 个苹果,刚好结束(即第 i 个苹果发给了之前某个拥有 k-1 个苹果的人,使那个人拥有了 k 个苹果)的方案数为 h[m][i]。显然以上定义中第二维的大小 <= m*k。
于是可以得到如下几个关系式:
\]
\]
\]
\]
注意到 g 的转移式中,可以通过将组合数拆成阶乘形式来进行卷积。
于是时间复杂度为 O(n^2klog(nk))。
最终答案 ans 的表达式为:
\]
代码实现的部分细节可能与上面描述的不一样(比如我的 p[m][i] 与 h[m][i] 是边算边求的),自行理解一下吧(因为我懒得改代码了)。
@accepted code@
#include<cstdio>
#include<algorithm>
using namespace std;
const int G = 3;
const int MAXN = 50;
const int MAXK = 1000;
const int MOD = 998244353;
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int pw[20 + 5], ipw[20 + 5];
int fct[MAXN*MAXK + 5], inv[MAXN*MAXK + 5];
void init() {
fct[0] = 1;
for(int i=1;i<=MAXN*MAXK;i++)
fct[i] = 1LL*fct[i-1]*i%MOD;
inv[MAXN*MAXK] = pow_mod(fct[MAXN*MAXK], MOD-2);
for(int i=MAXN*MAXK-1;i>=0;i--)
inv[i] = 1LL*inv[i+1]*(i + 1)%MOD;
for(int i=1;i<=20;i++)
pw[i] = pow_mod(G, (MOD-1)/(1<<i)), ipw[i] = pow_mod(G, (MOD-1) - (MOD-1)/(1<<i));
}
int comb(int n, int m) {
return 1LL*fct[n]*inv[m]%MOD*inv[n-m]%MOD;
}
void ntt(int *A, int len, int type) {
for(int i=0,j=0;i<len;i++) {
if( i < j ) swap(A[i], A[j]);
for(int l=(len>>1);(j^=l)<l;l>>=1);
}
for(int i=1;(1<<i)<=len;i++) {
int s = (1<<i), t = (s>>1);
int u = (type == 1) ? pw[i] : ipw[i];
for(int j=0;j<len;j+=s) {
for(int k=0,p=1;k<t;k++,p=1LL*p*u%MOD) {
int x = A[j+k], y = 1LL*A[j+k+t]*p%MOD;
A[j+k] = (x + y)%MOD, A[j+k+t] = (x + MOD - y)%MOD;
}
}
}
if( type == -1 ) {
int inv = pow_mod(len, MOD-2);
for(int i=0;i<len;i++)
A[i] = 1LL*A[i]*inv%MOD;
}
}
int dp[MAXN + 5][MAXN*MAXK + 5], A[2*MAXN*MAXK + 5], B[2*MAXN*MAXK + 5], C[2*MAXN*MAXK + 5];
int main() {
init();
int n, k, ans = 0;
scanf("%d%d", &n, &k);
dp[0][0] = 1;
for(int i=1;i<=n;i++) {
int len; for(len = 1; len <= i*(k-1); len <<= 1);
for(int j=0;j<len;j++)
A[j] = B[j] = 0;
for(int j=0;j<k;j++)
B[j] = inv[j];
for(int j=0;j<=(i-1)*(k-1);j++)
A[j] = 1LL*dp[i-1][j]*inv[j]%MOD;
ntt(A, len, 1), ntt(B, len, 1);
for(int j=0;j<len;j++)
C[j] = 1LL*A[j]*B[j]%MOD;
ntt(C, len, -1);
for(int j=0;j<=i*(k-1);j++)
dp[i][j] = 1LL*C[j]*fct[j]%MOD;
}
for(int i=1;i<=n;i++) {
int g = 0, p = 1;
for(int j=0;j<=(i-1)*(k-1);j++) {
int a = 1LL*i*dp[i-1][j]%MOD*comb(j+k-1, k-1)%MOD;
int b = dp[i][j+k];
int c = pow_mod(a+b, MOD-2);
g = (g + 1LL*p*a%MOD*c%MOD*(j+k)%MOD)%MOD;
p = 1LL*p*b%MOD*c%MOD;
}
int f = 1LL*pow_mod(i, MOD-2)*n%MOD*comb(n, i)%MOD*pow_mod(MOD-1, i-1)%MOD;
ans = (ans + 1LL*f*g%MOD)%MOD;
}
printf("%d\n", ans);
}
@details@
这个题与 uoj#449. 【集训队作业2018】喂鸽子 可能的确是同一道题(连用暴力模拟求期望帮助验证正确性都是一样的)。
只是我不知道哪一道题先出现,所以也不好判断这个是否可以定义为原题。
好像是在雅礼集训的时候讲课讲过这个题,还讲过不用 min-max 容斥的做法。但是好像找不着当初那个课件。。。
考试后,我对比了一下我考场上想的做法和标算的做法,发现好像不太一样。。。
可以去搜 uoj 的那道题的题解了解一下正确的切题姿势。
注意刚好结束时,最后一颗苹果一定发给那个 k 个苹果的人。
就是因为这个细节一开始写挂了。。。
@noi.ac - 443@ 老头子的话的更多相关文章
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- 策略模式(Strategy)(策略类,场景不同策略不同,环境策略分离组合,)
(定义一组算法,将每个算法都封装起来,并且使它们之间可以互换.) 例:button 与 listener ,在使用时具体根据情况实例化listener,做不同的操作. 背景 在软件开发中常常遇到这 ...
- 洛谷P1969 [NOIP2013提高组Day2T1] 积木大赛
P1969 积木大赛 题目描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是hi. 在搭建开始之前, ...
- NOIP模拟 9.09
AK300分 果实计数 (count.pas/.c/.cpp) 时间限制:1s,空间限制32MB 题目描述: 淘淘家有棵奇怪的苹果树,这棵树共有n+1层,标号为0~n.这棵树第0层只有一个节点,为根节 ...
- PHPStorm 批量选择,多光标同时编辑相同的内容
一直按Alt+J
- web前端学习(三)css学习笔记部分(2)-- css定位+盒子操作
3.CSS定位 3.1定位 1.CSS定位: 改变元素在页面上的位置 2.CSS定位机制 普通流:元素按照其在HTML中的位置顺序决定排布的过程 浮动 绝对布局 属性 描述 position 把元素放 ...
- LintCode刷题笔记-- BackpackII
标记: 动态规划 问题描述: Given n items with size Ai, an integer m denotes the size of a backpack. How full you ...
- 杨柳絮-Info:菏泽多措并举治理杨柳絮 5年内实现“有絮不成灾”
ylbtech-杨柳絮-Info:菏泽多措并举治理杨柳絮 5年内实现“有絮不成灾” 1.返回顶部 1. 菏泽多措并举治理杨柳絮 5年内实现“有絮不成灾” 2019年04月09日 11:44 来源:大 ...
- CSS hack处理
css hack指各版本及各品牌浏览器之间对CSS解释后出现网页内容的误差. 各浏览器CSS解析: 1.大部分特殊字符IE浏览器支持,其他主流浏览器firefox,chrome,opera,safar ...
- C/C++中运算符优先级汇总
编程语言C运算符优先级 优先级1: ( ).[ ].->. . 含义:圆括号.下标运算符.指向结构体成员运算符.结构体成员运算符 优先级2:!.~.++.――.-.(类型).*.&.si ...
- nginx+tomcat集群+redis(memcache)session共享!
常用保持session的方式: 1.一些代理(比如nginxIP_hash) 1.使用数据库来存储Session 2.使用Cookie来存储Session ...