链接:https://codeforces.com/contest/1269/problem/E

题意:给一个序列P1,P2,P3,P4....Pi,每次可以交换两个相邻的元素,执行最小次数的交换移动,使得最后存在一个子段1,2,…,k,这是题目所定义的f(k),题目要求求出所有的f(n),并依次输出。

思路:首先考虑逆序对问题,比如3 2 1 4这个序列,要使其变为1 2 3 4,最小的移动次数是这个序列中逆序对之和,2+1 = 3,逆序对是(3,2) (3,1)(2,1),但是在比如序列3 5 2 1 6 7 4 8 9,求f(4)怎么做?首先是不是把1 2 3 4这个序列聚成在一起,相连在一起,再去计算逆序对个数,两个过程所花费相加就是答案。那么这个题目就分为两个过程,1.聚合n个数字在一起。2.求逆序对的个数,两者花费相加就行。第1个过程如果使得聚合步数最少呢?其实就是求出聚合后的最中间的位置,其他所有的数字向这个位置靠近所花费的移动次数是最少的,这个过程可以用二分做。第2个过程可以用树状数组,也可以用线段树做。输入的时候记录每个数字的位置,建两个树状数组,一个树状数组维护数字出现的次数,用来求逆序对个数,另一个树状数组维护各个数字在原序列的位置。

AC代码:

 #include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
ll t[maxn],cnt[maxn];
ll pos[maxn];
int n;
inline int lowbit(ll x){
return x&(-x);
///算出x二进制的从右往左出现第一个1以及这个1之后的那些0组成数的二进制对应的十进制的数
}
void add(ll *b , int x, int k) {//单点修改
while (x <= n) { //不能越界
b[x] = b[x] + k;
x = x + lowbit(x);
}
}
ll getsum(ll *b,int x) { // a[1]……a[x]的和
ll ans = ;
while (x > ) {
ans = ans + b[x];
x = x - lowbit(x);
}
return ans;
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
cin>>n;
for(int i = ;i<=n;i++){
int t;
cin>>t;
pos[t] = i;
}
ll inv = ;
for(int i = ;i<=n;i++){
inv += (i--getsum(t,pos[i]));
add(t,pos[i],);
add(cnt,pos[i],pos[i]);
if(i==){
cout<<<<" ";
continue;
}
int mid,l = ,r = n;
while(l<=r){
mid = (l+r)>>;
if(getsum(t,mid)*<=i){
l = mid+;
}
else{
r = mid-;
}
}
ll ans = ;
ll cntL = getsum(t,mid);
ll cntR = i - cntL;
ll indexL = getsum(cnt,mid);
ll indexR = getsum(cnt,n)-indexL;
ans+=((mid+mid-cntL+)*cntL)/-indexL;
ans+=(indexR-((mid++(mid+cntR))*cntR)/);
cout<<ans+inv<<" ";
}
return ;
}

codeforces 1269E K Integers (二分+树状数组)的更多相关文章

  1. 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  2. BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组

    BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...

  3. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  4. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  5. 【BZOJ-2527】Meteors 整体二分 + 树状数组

    2527: [Poi2011]Meteors Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 306[Submit][Stat ...

  6. zoj-3963 Heap Partition(贪心+二分+树状数组)

    题目链接: Heap Partition Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge A sequence ...

  7. 【bzoj4009】[HNOI2015]接水果 DFS序+树上倍增+整体二分+树状数组

    题目描述 给出一棵n个点的树,给定m条路径,每条路径有一个权值.q次询问求一个路径包含的所有给定路径中权值第k小的. 输入 第一行三个数 n和P 和Q,表示树的大小和盘子的个数和水果的个数. 接下来n ...

  8. 【bzoj2527】[Poi2011]Meteors 整体二分+树状数组

    题目描述 有N个成员国.现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站. 这个星球经常会下陨石雨.BIU已经预测了接下来K场陨石雨的情况.BI ...

  9. bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...

随机推荐

  1. [TJOI2008] 小偷

    TJOI2008小偷 题目背景 一位著名的小偷进入了一个充满宝石的储藏室,这个储藏室是由一连串房间构成的,房间的标号从0开始,想进入第i个房间就必须从第i-1个房间进入,如图: 题目描述 上图为三个房 ...

  2. 【新人赛】阿里云恶意程序检测 -- 实践记录10.13 - Google Colab连接 / 数据简单查看 / 模型训练

    1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Go ...

  3. 使用 Express 脚手架

    安装: npm install -g express-generator 创建项目: express myapp 安装依赖 install dependencies: > npm install ...

  4. 将IMAGE转为PDF后上传

    using iTextSharp.text; using iTextSharp.text.pdf; /// <summary> /// 将IMAGE转为PDF后上传 /// </su ...

  5. thinkphp论坛项目开发

    效果图 首先是数据库 /* Navicat MySQL Data Transfer Source Server : xm Source Server Version : 50553 Source Ho ...

  6. python之路(列表,元组)

    列表 list:基础数据类型之一,可以索引,切片,步长,切片+步长可以增删改查,可迭代,可嵌套字典,元组,列表 一.索引,切片,步长 list01 = [1,2,3,'eric','west'] 1. ...

  7. ubuntu18.04 安装与卸载 php7.2

    安装: 如果之前有其他版本PHP,在这边禁用掉 1 sudo a2dismod php5 再来安装做准备 1234 sudo apt-get install software-properties-c ...

  8. C++基类、派生类、虚函数的几个知识点

    1.尽管派生类中含有基类继承来的成员,但派生类初始化这部分变量需要调用基类的构造函数. class A { private: int x; virtual void f(){cout<<& ...

  9. cli4适配移动端

    1.首先在项目中安装以下依赖 npm install px2rem-loader --savenpm install amfe-flexible --savenpm install postcss-p ...

  10. CTF中压缩文件的常见解法

    此篇记录两篇记录的比较好的关于压缩文件破解的总结 链接:https://blog.csdn.net/xuqi7/article/details/71437882 https://blog.csdn.n ...