codeforces 1269E K Integers (二分+树状数组)
链接:https://codeforces.com/contest/1269/problem/E
题意:给一个序列P1,P2,P3,P4....Pi,每次可以交换两个相邻的元素,执行最小次数的交换移动,使得最后存在一个子段1,2,…,k,这是题目所定义的f(k),题目要求求出所有的f(n),并依次输出。
思路:首先考虑逆序对问题,比如3 2 1 4这个序列,要使其变为1 2 3 4,最小的移动次数是这个序列中逆序对之和,2+1 = 3,逆序对是(3,2) (3,1)(2,1),但是在比如序列3 5 2 1 6 7 4 8 9,求f(4)怎么做?首先是不是把1 2 3 4这个序列聚成在一起,相连在一起,再去计算逆序对个数,两个过程所花费相加就是答案。那么这个题目就分为两个过程,1.聚合n个数字在一起。2.求逆序对的个数,两者花费相加就行。第1个过程如果使得聚合步数最少呢?其实就是求出聚合后的最中间的位置,其他所有的数字向这个位置靠近所花费的移动次数是最少的,这个过程可以用二分做。第2个过程可以用树状数组,也可以用线段树做。输入的时候记录每个数字的位置,建两个树状数组,一个树状数组维护数字出现的次数,用来求逆序对个数,另一个树状数组维护各个数字在原序列的位置。
AC代码:
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
ll t[maxn],cnt[maxn];
ll pos[maxn];
int n;
inline int lowbit(ll x){
return x&(-x);
///算出x二进制的从右往左出现第一个1以及这个1之后的那些0组成数的二进制对应的十进制的数
}
void add(ll *b , int x, int k) {//单点修改
while (x <= n) { //不能越界
b[x] = b[x] + k;
x = x + lowbit(x);
}
}
ll getsum(ll *b,int x) { // a[1]……a[x]的和
ll ans = ;
while (x > ) {
ans = ans + b[x];
x = x - lowbit(x);
}
return ans;
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
cin>>n;
for(int i = ;i<=n;i++){
int t;
cin>>t;
pos[t] = i;
}
ll inv = ;
for(int i = ;i<=n;i++){
inv += (i--getsum(t,pos[i]));
add(t,pos[i],);
add(cnt,pos[i],pos[i]);
if(i==){
cout<<<<" ";
continue;
}
int mid,l = ,r = n;
while(l<=r){
mid = (l+r)>>;
if(getsum(t,mid)*<=i){
l = mid+;
}
else{
r = mid-;
}
}
ll ans = ;
ll cntL = getsum(t,mid);
ll cntR = i - cntL;
ll indexL = getsum(cnt,mid);
ll indexR = getsum(cnt,n)-indexL;
ans+=((mid+mid-cntL+)*cntL)/-indexL;
ans+=(indexR-((mid++(mid+cntR))*cntR)/);
cout<<ans+inv<<" ";
}
return ;
}
codeforces 1269E K Integers (二分+树状数组)的更多相关文章
- 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组
BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
- 【BZOJ-2527】Meteors 整体二分 + 树状数组
2527: [Poi2011]Meteors Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 831 Solved: 306[Submit][Stat ...
- zoj-3963 Heap Partition(贪心+二分+树状数组)
题目链接: Heap Partition Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge A sequence ...
- 【bzoj4009】[HNOI2015]接水果 DFS序+树上倍增+整体二分+树状数组
题目描述 给出一棵n个点的树,给定m条路径,每条路径有一个权值.q次询问求一个路径包含的所有给定路径中权值第k小的. 输入 第一行三个数 n和P 和Q,表示树的大小和盘子的个数和水果的个数. 接下来n ...
- 【bzoj2527】[Poi2011]Meteors 整体二分+树状数组
题目描述 有N个成员国.现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站. 这个星球经常会下陨石雨.BIU已经预测了接下来K场陨石雨的情况.BI ...
- bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)
https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...
随机推荐
- 【58】目标检测之YOLO 算法
YOLO 算法(Putting it together: YOLO algorithm) 你们已经学到对象检测算法的大部分组件了,在这个笔记里,我们会把所有组件组装在一起构成YOLO对象检测算法. ...
- js磁力线代码(非压缩,自己在压缩的版本上优化了代码,易于阅读)
拿去白嫖吧: <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset=" ...
- [CF1311E] Construct the Binary Tree - 构造
Solution 预处理出 \(i\) 个点组成的二叉树的最大答案和最小答案 递归做,由于只需要构造一种方案,我们让左子树大小能小就小,因此每次从小到大枚举左子树的点数并检验,如果检验通过就选定之 现 ...
- Math, Date,JSON对象
Math 对象 Math是 JavaScript 的原生对象,提供各种数学功能.该对象不是构造函数,不能生成实例,所有的属性和方法都必须在Math对象上调用. 静态属性 Math对象的静态属性,提供以 ...
- gulp常用插件之http-proxy-middleware使用
更多gulp常用插件使用请访问:gulp常用插件汇总 http-proxy-middleware这是一个用于后台将请求转发给其它服务器.其实这并不是转给gulp使用的,在其它构建工具也可以用. 更多使 ...
- RBAC基于角色的权限管理模型
一.权限管理模型的必要性: a. 安全性:防止误操作,防止数据泄露,保证信息的安全. b. 数据隔离:保持不同的角色具有不同的权限,只能看到自己权限范围内的数据 二.权限管理模型的发展: a. 传统的 ...
- 【剑指Offer】60、按之字形顺序打印二叉树
题目描述 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 题解:BFS 主要的方法与BFS写法没什么区 ...
- MS SQLServer相关自动化程序的问题汇总 (SQLServer每天定时输出EXCEL或xml的格式的问题等 )
· MS SQLServer相关问题 1. 使用MS SQLServer每天定时输出EXCEL格式的文件,实现每天的Excel报表导出 2. 使用MS SQLServer每天定时输出xml格式的文件, ...
- 题解【洛谷P3456】[POI2007]GRZ-Ridges and Valleys
题面 考虑 \(\text{Flood Fill}\). 每次在 \(\text{BFS}\) 扩展的过程中增加几个判断条件,记录山峰和山谷的个数即可. #include <bits/stdc+ ...
- Educational Codeforces Round 82 (Rated for Div. 2) A-E代码(暂无记录题解)
A. Erasing Zeroes (模拟) #include<bits/stdc++.h> using namespace std; typedef long long ll; ; in ...