[1天搞懂深度学习] 读书笔记 lecture I:Introduction of deep learning
- 通常机器学习,目的是,找到一个函数,针对任何输入:语音,图片,文字,都能够自动输出正确的结果。

- 而我们可以弄一个函数集合,这个集合针对同一个猫的图片的输入,可能有多种输出,比如猫,狗,猴子等,而我们通过提供大量的training data给这个函数集合,对集合里的各种函数组合的输出进行比对,最后选出一个能输出最佳结果(结果是猫)的组合,那么因为这个组合已经很能够很准确的识别猫,所以这个组合就能用来检测图片里是否是猫。

- 具体来说,下面第一张图,某一个点为一个函数,而整个网络机构为函数集合,一个集合里存在非常多的可能,任何函数都可以相互组合进行计算。

下面第2张图的第一列为输入,第二列为第1层,每个输入都作为layer1的输入,输出后又分别作为layer2的输入,这样用穷举法,遍历针对每一个输入的每一种计算可能而那么多layer就定义了一个函数集。

- 上面提到的大量的training data,是训练的素材,而如何判断针对这些输入的输出是否正确呢?我理解就是根据label来的


-. 函数集里的每种函数组合,针对每一个training data产生的结果与 target之间的差称为LOSS,针对所有training data产生的LOSS之和,就是考察某一个函数组合的goodness的数据指标。目标当然是LOSS越小越好,而关键就是找到那个network parameters(即下图中的b和w,因为这个函数里就这些参数是变化的)让LOSS最小。所以这个问题,最终成为,针对Loss=f(training data, w,b, 函数组合),找到合适的network parameters让LOSS最小的问题,通过对这个函数求导就能得到结论:
求导为负数,说明L在减小,就增加w,增加L减小的趋势。
求导为正,说明L在增加,则减小W,向L增加的方向走。
反复操作,直到求导为0
而每次计算求导时,w前进/后退多少,称之为learning rate



找到合适的network parameters,就找到了针对这些training data的正确的函数组合了!这样学习模型就建立成功,可以实现正确的识别同类型的输入了!
[1天搞懂深度学习] 读书笔记 lecture I:Introduction of deep learning的更多相关文章
- 深度学习读书笔记之RBM(限制波尔兹曼机)
深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的 ...
- 一天搞懂深度学习-训练深度神经网络(DNN)的要点
前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...
- 深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 201 ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
- Python深度学习读书笔记-5.Keras 简介
Keras 重要特性 相同的代码可以在 CPU 或 GPU 上无缝切换运行. 具有用户友好的 API,便于快速开发深度学习模型的原型. 内置支持卷积网络(用于计算机视觉).循环网络(用于序列处理)以及 ...
- Python深度学习读书笔记-4.神经网络入门
神经网络剖析 训练神经网络主要围绕以下四个方面: 层,多个层组合成网络(或模型) 输入数据和相应的目标 损失函数,即用于学习的反馈信号 优化器,决定学习过程如何进行 如图 3-1 所示:多个层 ...
- Python深度学习读书笔记-3.神经网络的数据表示
标量(0D 张量) 仅包含一个数字的张量叫作标量(scalar,也叫标量张量.零维张量.0D 张量).在Numpy 中,一个float32 或float64 的数字就是一个标量张量(或标量数组).你可 ...
- Python深度学习读书笔记-1.什么是深度学习
人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?
- TensorFlow和深度学习-无需博士学位(TensorFlow and deep learning without a PhD)
1. 概述 原文地址: TensorFlow and deep learning,without a PhD Learn TensorFlow and deep learning, without a ...
随机推荐
- Python学习中的“按位取反”笔记总结
| 疑惑 最近在学习Python的过程中了解到位运算符,但对于按位取反有点迷糊,就比如说~9(按位取反)之后的结果是-10,为什么不是6呢?所以下面就来看看为什么不是6,正确结果是如何计算出来的呢? ...
- TensorFlow——训练模型的保存和载入的方法介绍
我们在训练好模型的时候,通常是要将模型进行保存的,以便于下次能够直接的将训练好的模型进行载入. 1.保存模型 首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起 ...
- dp-最大连续子序列的和
https://www.felix021.com/blog/read.php?1587 什么是最大连续子序列和呢 ? 最大连续子序列和是所有子序列中元素和最大的一个 . 问题 : 给定一个序列 { - ...
- Docker + node(koa) + nginx + mysql 开发环境搭建
什么是Docker Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然 ...
- js 获取元素坐标 和鼠标点击坐标
js 获取元素的位置 var odiv=document.getElementById('divid'); alert(odiv.getBoundingClientRect().left); aler ...
- FluentData 学习 第一弹
地址: http://fluentdata.codeplex.com/ 前世: FluentData 我们公司用的一个增删改查的里面的持久层.之前还不知道 这个持久层叫FluentData. 某天看 ...
- Java学习笔记(二) 面向对象---构造函数
面向对象---构造函数 特点 函数名与类名相同 不用定义返回值类型 不写return语句 作用 对象一建立,就对象进行初始化. 具体使用情况 class Student { Student(){ Sy ...
- [模板]线性递推+BM
暴力版本: #include<bits/stdc++.h> #define mod 998244353 using namespace std; typedef long long int ...
- 理解Javascript的柯里化
前言 本文1454字,阅读大约需要4分钟. 总括: 本文以初学者的角度来阐述Javascript中柯里化的概念以及如何在工作中进行使用. 原文地址:理解Javascript的柯里化 知乎专栏: 前端进 ...
- wireshark简单实用教程
转自:https://jingyan.baidu.com/article/c35dbcb0866b698916fcbc81.html wireshark是非常流行的网络封包分析软件,功能十分强大.可以 ...