Buy Low, Buy Lower

给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\)。

显然我们可以很轻易地求出严格下降子序列,思维的过程应该是从熟悉走向不熟悉,从自然走向不自然,因此还是照搬老套路,设\(f_i\)表示以i结尾的最长严格下降子序列的长度,\(g_i\)表示这样的序列的方案数。

接着我们发现,方案之所以不能照搬转移,关键在于结尾有多个相同的数,它们的方案发生了叠加,再仔细研究,你会发现,最靠近i的数必然包括了所有的方案,于是我们只要桶排就可以做到寻找最近的数。

注意到数字可能很大,于是可以事先离散化,而且此题需要打高精度,然后就可以做了。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define il inline
#define ri register
#define Size 5010
using namespace std;
struct lll{
int num[75];
il lll(){clear();}
il void clear(){
memset(num,0,sizeof(num));
num[0]|=true;
}
il void read(){
string s;cin>>s,num[0]=s.size();
for(ri int i(1);i<=num[0];++i)
num[i]=s[num[0]-i]-48;
}
il void print(){
for(int i(num[0]);i;--i)
putchar(num[i]+48);
putchar('\n');
}
il bool operator!(){
return num[0]==1&&num[1]==0;
}
il void operator=(string s){
num[0]=s.size();
for(ri int i(1);i<=num[0];++i)
num[i]=s[num[0]-i]-48;
}
il lll operator+(lll x){
lll y;y.clear();ri int i;
for(i=1;i<=num[0]||i<=x.num[0];++i){
y.num[i]+=num[i]+x.num[i];
if(y.num[i]>9)y.num[i]-=10,++y.num[i+1];
}if(i>1&&!y.num[i])--i;return y.num[0]=i,y;
}
il void operator+=(lll x){
ri int i;
for(i=1;i<=num[0]||i<=x.num[0];++i){
num[i]+=x.num[i];if(num[i]>9)num[i]-=10,++num[i+1];
}while(i>1&&!num[i])--i;num[0]=i;
}
}fp[Size];
struct lsh{
int a[Size],b[Size],n;
il int look(int x){
return b[x];
}
il void prepare(int x,int ar[]){
n=x;
for(ri int i(1);i<=n;++i)
a[i]=ar[i];sort(a+1,a+n+1);
for(ri int i(1);i<=n;++i)
b[i]=dfs(ar[i]);
}
il int dfs(int x){
int l(1),r(n),mid;
while(l<=r){
mid=l+r>>1;
if(a[mid]<x)l=mid+1;
else r=mid-1;
}return l;
}
}L;
bool b[Size];
int a[Size],dp[Size];
il void read(int&);
int main(){
int n;read(n);
for(int i(1);i<=n;++i)read(a[i]);
L.prepare(n,a),a[++n]=-1;
for(int i(1),j;i<=n;++i){
memset(b,0,sizeof(b));
for(j=i-1;j;--j)
if(a[j]>a[i]){
if(dp[j]>dp[i])
dp[i]=dp[j],fp[i]=fp[j],
b[L.look(j)]|=true;
else if(dp[i]==dp[j]&&!b[L.look(j)])
fp[i]+=fp[j],b[L.look(j)]|=true;
}
++dp[i];if(!fp[i])fp[i]="1";
}printf("%d ",dp[n]-1),fp[n].print();
return 0;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}

Buy Low, Buy Lower的更多相关文章

  1. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  4. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  5. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  6. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  7. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  8. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  9. POJ 1952 BUY LOW, BUY LOWER

    $dp$. 一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时 ...

随机推荐

  1. JS:面向对象(进阶篇)

    组合使用构造函数和原型模式 构造函数模式用于定义实例属性,而原型模式用于定义方法和共享属性.结果,每个实例都会有自己的一份实例属性的副本,但同时又共享这对方法的引用,最大限度的节省了内存. funct ...

  2. js模块化的历史

    了解模块化开发的历史,可以帮助我们理解 模块化开发的形式是怎么样的,对我们深入学习模块化开发会有很大的帮助: 一.服务器端JS的模块化 nodeJS的出现   ------官网: http://nod ...

  3. (数据科学学习手札61)xpath进阶用法

    一.简介 xpath作为对网页.对xml文件进行定位的工具,速度快,语法简洁明了,在网络爬虫解析内容的过程中起到很大的作用,除了xpath的基础用法之外(可参考我之前写的(数据科学学习手札50)基于P ...

  4. 让微信小程序页面之间的通信不在变得困难

    一个开始 小程序开发者总会碰到各种页面之间的通信问题,实现方式也五花八门,比如... 场景还原 首先这是一个电商小程序. 有这样一个需求: 首页某个地方要展示购物车商品数量. 当我在其他页面加购了商品 ...

  5. yppasswd, ypchfn, ypchsh - 修改你在NIS数据库中的密码

    SYNOPSIS(总览) yppasswd [-f] [-l] [-p] [user] ypchfn [user] ypchsh [user] DESCRIPTION(描述) 在Linux中,标准的 ...

  6. Linux 进程间通信 信号灯集

    1.特点:  信号灯集,是控制访问临界资源 信号灯(semaphore),也叫信号量.它是不同进程间或一个给定进程内部不同线程间同步的机制System V的信号灯是一个或者多个信号灯的一个集合(允许对 ...

  7. MySQL高可用配置(主从复制)

    主从复制包含两个步骤: 在 master 主服务器(组)上的设置,以及在 slave 从属服务器(组)上的设置. 环境: MASTER: 192.168.155.101SLAVE: 192.168.1 ...

  8. Java Swing 窗体屏幕居中

    Java开发桌面程序用AWT或SWING,可以用设置主窗口位置,使主窗口居中一般使用下面的方法: 01.第一种方法              int windowWidth = frame.getWi ...

  9. 【转载】带你吃透RTMP

    RTMP协议是Real Time Message Protocol(实时信息传输协议)的缩写,它是由Adobe公司提出的一种应用层的协议,用来解决多媒体数据传输流的多路复用(Multiplexing) ...

  10. thinkphp 上传安全

    网站的上传功能也是一个非常容易被攻击的入口,所以对上传功能的安全检查是尤其必要的. 大理石平台支架 系统提供的上传类Think\Upload提供了安全方面的支持,包括对文件后缀.文件类型.文件大小以及 ...