训练20191009 2018-2019 ACM-ICPC, Asia East Continent Finals
2018-2019 ACM-ICPC, Asia East Continent Finals
总体情况
本次训练共3小时20分钟,通过题数4。
解题报告
D. Deja vu of … Go Players
题意
\(A,B\)博弈,\(A\)有\(N\)堆石子,第\(i\)堆数量\(a_i\); \(B\)有\(M\)堆石子,第\(i\)堆数量\(b_i\)。每次每个人可以从自己拥有的石子堆中选取任意一堆并拿走任意正整数个石子。先拿完的人赢。求胜负情况。$N,M \leq 100, $ $a_i,b_i \leq 10^9, $ \(T \leq 100\)
题解
很显然贪心跑得快,只和堆数有关。根据\(N,M\)的大小关系决定胜负。
L. Eventual … Journey
题意
有\(n\)个点,\(m\)条双向边长度都是\(1\),同时点被分为两类,每类点可以花费\(1\)的代价到任何一个自己同类的点。对所有\(i\),求
\]
数据范围\(n,m \leq 10^5\)
题解
我们设\(d_i\)为点\(i\)与不同于自己类别的点直接相连的数量。设\(a_i\)为点\(i\)的类别,取值\(0\)或\(1\)。设\(s_i\)为第\(i\)类点的数量。设\(c_i\)为第\(i\)类点中有多少个点与另一类点有边直接相连。
对于任意的\(i\),如果
- \(d_i > 0\),那么显然点\(i\)可以花费\(1\)的代价到任何一个自己同类的点,以及任何一个与自己直接相连的不同类的点,其余的点代价为\(2\),于是答案为
\]
- \(d_i = 0\),那么显然点\(i\)可以花费\(1\)的代价到任何一个与自己同类的点,花费\(2\)的代价到另一类点中与\(i\)所在类别点集有边直接相连的点,花费\(3\)的代价到其余的点。于是答案为
\]
时间复杂度 \(O(n+m)\)
F. Interstellar … Fantasy
题意
给出三维欧几里得空间中两个点的坐标,求不经过一个给定球体的最短路长。
题解
稍作思考,发现如果两点连线段与球体不相交则为线段长,若相交,则答案必然为两线段和一弧的和。保留原来的线段并不是最优解,很容易发现,当两线段与球相切时最优。更准确地,整条路经一定在给定三个点确定的平面上,并且平面与球交出的圆与两条线段相切时就是最优解。
利用点积叉积和矢量定比分点讨论一下即可。
P3 delt=p-q;
db len=delt.abs();
db d=(cross(p-c,q-c).abs())/(len);
if(d<r) {
db d1=(p-c).abs(), d2=(q-c).abs();
db l1=sqrt(d1*d1-r*r), l2=sqrt(d2*d2-r*r);
db theta = acos(dot(p-c,q-c)/(d1*d2)) - acos(r/d1) - acos(r/d2);
if(abs(((sqrt(d1*d1-d*d)+sqrt(d2*d2-d*d)))*d - (cross(p-c,q-c).abs()) ) < 1e-5) {
if(d<1e-5) {
if(dot(p-c,q-c)>0) cout<<setiosflags(ios::fixed)<<setprecision(10)<<len<<endl;
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<r*theta + l1 + l2<<endl;
}
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<r*theta + l1 + l2<<endl;
}
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<len<<endl;
}
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<len<<endl;
训练20191009 2018-2019 ACM-ICPC, Asia East Continent Finals的更多相关文章
- 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)
Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- 2018-2019 ACM-ICPC, Asia East Continent Finals I. Misunderstood … Missing(dp)
题目链接: http://codeforces.com/gym/102056/problem/I 题意: 人物有l两个属性分别是$A,D$ 每个回合人物$A\pm D$ 每个回合有三个选择分别是: 1 ...
- 2018-2019 ACM-ICPC, Asia East Continent Finals部分题解
C:显然每p2个数会有一个0循环,其中22 32 52 72的循环会在200个数中出现,找到p2循环的位置就可以知道首位在模p2意义下是多少,并且循环位置几乎是唯一的(对72不满足但可能的位置也很少) ...
- 2018-2019 ACM-ICPC, Asia East Continent Finals Solution
D. Deja vu of … Go Players 签. #include <bits/stdc++.h> using namespace std; int t, n, m; int m ...
- 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp
QSC and Master Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
- hdu 5444 Elven Postman(二叉树)——2015 ACM/ICPC Asia Regional Changchun Online
Problem Description Elves are very peculiar creatures. As we all know, they can live for a very long ...
- (二叉树)Elven Postman -- HDU -- 54444(2015 ACM/ICPC Asia Regional Changchun Online)
http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limit: 1500/1000 MS (Java/Others) ...
- 2015 ACM/ICPC Asia Regional Changchun Online HDU 5444 Elven Postman【二叉排序树的建树和遍历查找】
Elven Postman Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...
随机推荐
- C#通过文件路径获取文件名
string fullPath = @"\WebSite1\Default.aspx"; string filename = System.IO.Path.GetFileName( ...
- CSS语法、选择器、继承、层叠
行内样式(内联样式) <h1 style="color:red;font-size:20px;">css行内样式</h1> 内部样式表(嵌入样式) < ...
- JAVA控制流程
Java代码有三种执行结构流程,顺序结构.分支结构.循环结构 顺序结构 顺序结构是最简单的代码执行结构,从代码开始逐步执行每一句代码到结束 public class C { public static ...
- scrapy(一)--Pycharm创建scrapy项目
1.环境 操作系统:windows10. python版本:python3.6,Anaconda(将Anaconda3\Scripts;路径添加到环境变量Path中) pycharm:pycharm2 ...
- py 二级习题(加密与解密)
题目: 1.比如说,我想 “我喜欢月月” 这句话加密即:将字符串中的每个字符的unicode值全都向后移动三位,即unicode 值加3,然后输出. 2.将按照上述规则加密的文字解密即:将字符 ...
- 树莓派查看ip地址(命令ifconfig)和退出ping
1.1树莓派查看ip地址用如下命令: ifconfig -a 结果如下图所示: 注意:树莓派查看ip地址是用命令ifconfig,而Windows的cmd命令查看ip地址是ipconfig.
- linux100讲——03 什么是linux
1.linux 有两种含义: 一种是linus 编写的开源操作系统的内核 另一种是广义的操作系统 2.linux的第一印象 服务端操作系统和客户端操作系统要做的事情不一样 命令行操作方式与图形界面的差 ...
- RocketMQ解决幂等性问题
一.造成重复消费的原因 在于回馈机制.正常情况下,消费者在消费消息时候,消费完毕后,会发送一个ACK确认信息给消息队列(broker),消息队列(broker)就知道该消息被消费了,就会将该消息从消息 ...
- selenium--find_element_by_xpath()方法汇总
一.从根目录/开始 有点像Linux的文件查看,/代表根目录,一级一级的查找,直接子节点,相当于css_selector中的>号/html/body/div/p 二.根据元素属性选择: 查找具体 ...
- CSS-定义样式表
1.HTML标记定义 p{属性:属性值;属性1:属性1} <p>...</p> 注:p可以叫做选择器,定义那个标记中的内容执行其中的样式.一个选择器可以控制若干个样式属性,他们 ...