版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Answer3664/article/details/98992409
参考:

https://pytorch.org/docs/stable/nn.html

https://github.com/apachecn/pytorch-doc-zh/blob/master/docs/1.0/blitz_data_parallel_tutorial.md

一、 torch.nn.DataParallel
torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)

在正向传递中,模块在每个设备上复制,每个副本处理一部分输入。在向后传递期间,来自每个副本的渐变被加到原始模块中。

module:需要并行处理的模型
device_ids:并行处理的设备,默认使用所有的cuda
output_device:输出的位置,默认输出到cuda:0
例子:

>>> net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
>>> output = net(input_var) # input_var can be on any device, including CPU
torch.nn.DataParallel()返回一个新的模型,能够将输入数据自动分配到所使用的GPU上。所以输入数据的数量应该大于所使用的设备的数量。

二、一个完整例子
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 随机数据集
class RandomDataset(Dataset):

def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)

def __getitem__(self, index):
return self.data[index]

def __len__(self):
return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
batch_size=batch_size, shuffle=True)

# 以简单模型为例,同样可以用于CNN, RNN 等复杂模型
class Model(nn.Module):
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)

def forward(self, input):
output = self.fc(input)
print('In model: input size', input.size(), 'output size:', output.size())
return output

# 实例
model = Model(input_size, output_size)

if torch.cuda.device_count() > 1:
print("Use", torch.cuda.device_count(), 'gpus')
model = nn.DataParallel(model)

model.to(device)

for data in rand_loader:
input = data.to(device)
output = model(input)
print('Outside: input size ', input.size(), 'output size: ', output.size())
输出:

In model: input size torch.Size([30, 5]) output size: torch.Size([30, 2])
Outside: input size  torch.Size([30, 5]) output size:  torch.Size([30, 2])
In model: input size torch.Size([30, 5]) output size: torch.Size([30, 2])
Outside: input size  torch.Size([30, 5]) output size:  torch.Size([30, 2])
In model: input size torch.Size([30, 5]) output size: torch.Size([30, 2])
Outside: input size  torch.Size([30, 5]) output size:  torch.Size([30, 2])
In model: input size torch.Size([10, 5]) output size: torch.Size([10, 2])
Outside: input size  torch.Size([10, 5]) output size:  torch.Size([10, 2])

若有2个GPU

Use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
若有3个GPU

Use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
总结:

DataParallel自动的划分数据,并将作业发送到多个GPU上的多个模型。DataParallel会在每个模型完成作业后,收集与合并结果然后返回给你。
————————————————
版权声明:本文为CSDN博主「Answerlzd」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Answer3664/article/details/98992409

pytorch利用多个GPU并行计算多gpu的更多相关文章

  1. 浅说CPU并行计算与GPU并行计算

    最近在学一门课,叫做“C++与并行计算”.要用到多CPU(进程)并行的原理,实现语言是C++的MPI接口.联想到上学期用到CUDA C/C++来做并行计算,就对这两门语言做一个总结,分享下自己关于并行 ...

  2. 国内云计算的缺失环节: GPU并行计算(转)

    [IT时代周刊编者按]云计算特有的优点和巨大的商业前景,让其成为了近年来的IT界最热门词汇之一.当然,这也与中国移动互联网的繁荣紧密相关,它们需要有相应的云计算服务作为支撑.但本文作者祁海江结合自身的 ...

  3. 科学计算 | Matlab 使用 GPU 并行计算

    科学计算 | Matlab 使用 GPU 并行计算 本文转载自:  https://sanwen8.cn/p/14bJc10.html       Matlab下直接使用GPU并行计算(预告)< ...

  4. [信安Presentation]一种基于GPU并行计算的MD5密码解密方法

    -------------------paper--------------------- 一种基于GPU并行计算的MD5密码解密方法 0.abstract1.md5算法概述2.md5安全性分析3.基 ...

  5. [源码解析] PyTorch 流水线并行实现 (6)--并行计算

    [源码解析] PyTorch 流水线并行实现 (6)--并行计算 目录 [源码解析] PyTorch 流水线并行实现 (6)--并行计算 0x00 摘要 0x01 总体架构 1.1 使用 1.2 前向 ...

  6. 【视频开发】GPU编解码:GPU硬解码---DXVA

    GPU编解码:GPU硬解码---DXVA 一.DXVA介绍 DXVA是微软公司专门定制的视频加速规范,是一种接口规范.DXVA规范制定硬件加速解码可分四级:VLD,控制BitStream;IDCT,反 ...

  7. ARM:移动GPU往PC GPU效能迈进

    行动装置的热潮持续不退,各大手机制造商除了想尽办法推出外型酷炫的行动装置设备来吸引消费者的目光之外,更在行动应用处理器玩起多核心的「核」战争,无非是希望能够带给消费者更优异的效能新体验.然而,随着消费 ...

  8. TensorFlow指定使用GPU 多块gpu

    持续监控GPU使用情况命令: $ watch -n 10 nvidia-smi1一.指定使用某个显卡如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 如果实验室多人公用一台服务器 ...

  9. 【并行计算-CUDA开发】浅谈GPU并行计算新趋势

    随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...

随机推荐

  1. IDEA的下载安装

    一. 下载 二. 安装 安装成功!!! 选择试用版

  2. Acer笔记本蓝牙功能不可用

    在电脑运行过程中,本应该如下所存在的蓝牙图标不存在了: 打开设置,本应该可以选择开关的蓝牙开关按钮也不存在了: 电脑的蓝牙功能无法使用: 处理方法: 在C:\windows\sysytem32\文件夹 ...

  3. SQL 查询--日期条件(今日、昨日、本周、本月。。。) (转)

    主要用到sql 函数 DATEDIFF(datepart,startdate,enddate) sql 语句,设 有 数据库表 tableA(日期字段ddate) ——查询 今日 select * f ...

  4. 线程安全之suspend(挂起) 和resume(执行)

    suspend()不会释放锁 如果加锁发生在resume()之前会发生死锁 t.join()是阻塞此方法,此线程再继续:通常用于在main()主线程内,等待其它线程完成再结束main()主线程.图中j ...

  5. 嘴巴题3 「BZOJ1412」[ZJOI2009] 狼和羊的故事

    「BZOJ1412」[ZJOI2009] 狼和羊的故事 Description "狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......" Or ...

  6. TZ_13_微服务场景Eureka

    1.搭建Eureka的注册中心 1.1Eureka几个时间间隔配置详解 1 >客户端信息上报到eureka服务的时间周期,配置的值越小,上报越频繁,eureka服务器应用状态管理一致性越高 #客 ...

  7. TZ_01MyBatis_jdbcConfig.properties

    jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mybatis?serverTimezone=GMT jd ...

  8. Excel 表格中根据某一列的值从另一个xls文件的对应sheet中查找包含其中一列的内容(有点拗口)

    =VLOOKUP(C3&"*",INDIRECT("'[2008-2016年三地商务明细表.xls]"&L3&"年北京'!$D ...

  9. html文件中script标签放在哪里?

  10. springmvc配置不拦截静态资源

    <mvc:resources mapping="/js/**" location="/js/"/>