$CF24D\ Broken Robot\ DP+$高斯消元
Description
你收到的礼物是一个非常聪明的机器人,行走在一块长方形的木板上.不幸的是,你知道它是坏的,表现得相当奇怪(随机).该板由n行和m列的单元格组成.机器人最初是在i行和j列的某个单元格上.然后在每一步机器人可以到另一个单元.目的是去底层(n次)行.机器人可以停留在当前单元,向左移动,向右边移动,或者移动到当前下方的单元.如果机器人在最左边的列不能向左移动,如果它是在最右边的列不能向右移动.在每一步中,所有可能的动作都是同样可能的.返回步的预期数量达到下面的行.
Sol
这题和传纸条有点类似,不同的是机器人既能向左走又能向右走,而传纸条只能向右传.
f[i][j]表示从(i,j)走到最后一行所需要的期望步数
f[i][1]=1/3(f[i][1]+f[i][2]+f[i+1][1])+1
f[i][m]=1/3(f[i][m]+f[i][m-1]+f[i+1][m])+1
(j!=1&&j!=m)f[i][j]=1/4(f[i][j]+f[i][j-1]+f[i][j+1]+f[i+1][j])+1
部分状态之间可以互相转移互相影响,并不能满足DP的无后效性
所以不能线性递推,要用高斯消元直接求出状态转移方程的解
需要注意的是m=1的情况要特判
m=3时,系数矩阵如下:
-2/3 1/3 0
1/4 1/4 1/4
0 1/3 -2/3
值得一提的是,我们用f[i][j]表示从(i,j)走到最后一步的期望步数,按照行号倒序进行递推,而不是用f[i][j]表示从(x,y)到(i,j)的期望步数并正序递推.原因是,若正序递推,则还须求出(x,y)到最后一行每一个位置的概率p[n][j],计算Σp[n][j]*f[n][j]才能得到答案,较为复杂.
事实上,很多数学期望DP都会采取倒推的方式执行.
Code
关于代码实现其实还有几个值得注意的地方
1.f[i][j]数组可以滚动优化
2.因为要多次解方程组,很多人可能会每次都初始化a数组(系数矩阵).其实没有必要,只要初始化一次,并且同时记录一下c[i]=a[i+1][i]/a[i][i]就好了(没写code这句话可能暂时看不懂,看下code就会懂了鸭QwQ)
#include<iostream>
#include<cstdio>
#include<cstring>
#define Rg register
#define il inline
#define db double
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a));
#define go(i,a,b) for(Rg int i=a;i<=b;++i)
#define yes(i,a,b) for(Rg int i=a;i>=b;--i)
using namespace std;
il int read()
{
int x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
const int N=;
int n,m,x,y;
db a[N][N],b[N],f[N],c[N];
il void init_a()
{
if(m==){a[][]=(db)-1.0/;return;}
a[][]=(db)-2.0/;a[][]=(db)1.0/;
a[m][m-]=(db)1.0/;a[m][m]=(db)-2.0/;
go(i,,m-)a[i][i-]=(db)1.0/,a[i][i]=(db)-3.0/,a[i][i+]=(db)/;
go(i,,m)
{
c[i]=a[i+][i]/a[i][i];
a[i+][i]-=c[i]*a[i][i];
a[i+][i+]-=c[i]*a[i][i+];
}
}
il void init_b()
{
if(m==){b[]=(db)-f[]/-;return;}
b[]=-(db)f[]/-;b[m]=-(db)f[m]/-;
go(i,,m-)b[i]=-(db)f[i]/-;
}
il void calc()
{
go(i,,m){db t=c[i];b[i+]-=t*b[i];}
f[m]=b[m]/a[m][m];
yes(i,m-,)f[i]=(b[i]-f[i+]*a[i][i+])/a[i][i];
}
int main()
{
n=read(),m=read(),x=read(),y=read();//m==1 special case !
init_a();
yes(i,n-,x){init_b();calc();}
printf("%.10lf",f[y]);
return ;
}
$CF24D\ Broken Robot\ DP+$高斯消元的更多相关文章
- codeforces 24d Broken robot 期望+高斯消元
题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- LightOJ - 1151概率dp+高斯消元
概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...
- 【BZOJ3640】JC的小苹果 概率DP+高斯消元
[BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- BZOJ3270 博物館 概率DP 高斯消元
BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...
- 【CF24D】Broken Robot (DP+高斯消元)
题目链接 题意:给定一个\(n\times m\)的矩阵,每次可以向→↓←移动一格,也可以原地不动,求从\((x,y)\)到最后一行的期望步数. 此题标签\(DP\) 看到上面这个肯定会想到 方法一: ...
随机推荐
- PHP header 的7种用法
这篇文章介绍的内容是关于PHP header()的7种用法 ,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下 PHP header 的7种用法 1. 跳转页面 header('Locat ...
- Javascript用正则表达式replace替换父串中所有符合条件的子串
这样用,只会替换匹配到的第一个子串 str = 'I hava a pen ,I hava an apple,apple pen, pen apple' str = str.replace('appl ...
- Flask——向博客文章中添加图片
未添加图片样式 添加图片设置: 1.允许渲染img标签 在数据库文章模型allowed_tags中添加img 2.给clean函数加个参数attributes=attrs, attrs = { '*' ...
- Python深入:01内存管理
在Python中,一切都是指针. 一:对象三特性 所有的Python对象都有三个特性:身份,类型和值. 身份:每一个对象都有一个唯一的身份标识,任何对象 ...
- php实现第三方登录
1. oAuth2.0原理 网站为了方便用户快速的登录系统,都会提供使用知名的第三方平台账号进行快速登录的功能,第三方登录都是基于oAuth2.0标准来实现的.下面详细分析[基于账号密码授权]和[基于 ...
- Linux 正文处理命令及tar命令 利用vi编辑器创建和编辑正文文件
要点回顾 1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cp /etc/passwd . cat ./passwd >1.txt cp /etc/group ...
- Top 10 open source projects of 2015
Top 10 open source projects of 2015 Posted 15 Dec 2015Jen Wike Huger (Red Hat)Feed 188 up 31 comment ...
- hdu 1708 Fibonacci String
Fibonacci String Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- javaObject类
所有类的公共父类,一旦一个类没有显示地继承一个类则其直接父类一定是Object. 一切数据类型都可用Object接收 class OOXX extends Object{}等价于class ooXX ...
- [转]vue原理简介
写vue也有一段时间了,对vue的底层原理虽然有一些了解,这里总结一下. vue.js中有两个核心功能:响应式数据绑定,组件系统.主流的mvc框架都实现了单向数据绑定,而双向绑定无非是在单向绑定基础上 ...