CF 848E(动态规划+分治NTT)
传送门:
http://codeforces.com/problemset/problem/848/E
题解:
假设0-n一定有一条边,我们得到了一个方案,那么显然是可以旋转得到其他方案的。
记最大的i满足i到i+n有一条边,那么旋转的方案数是n-i
考虑动态规划:
设\(g[i]\)表示i个点,只用相邻或隔一个去拼接的方案数。
转移显然有\(g[i]=g[i-2]+g[i-4]\)。
设\(f[i][0/1][0/1]\)表示1有连对面的,n+1有连对面的,2-n填,前面后面是否要伸出去的方案数。
那么显然有\(f[i][j][k]=g[i-1-j-k]*(i-1)^2\)。
设\(h[i][0/1]\)表示前i个确定了,第i个是连对面,后面是否伸出去。
显然有\(h[i][v]=\sum_{j=0}^{i-1}h[j][u]*f[i-j][u][v]\)
初值为:\(h[0][0]=1->ans+=?*h[?][0]\)
\(h[0][1]=1->ans+=?*h[?][1]\)
由于最后一段有长度的额外贡献,所以:
\(Ans=\sum_{i=0}^{n-1}h[i][u]*f[n-i][u][?]*(n-i)\)
这个东西显然可以分治NTT优化转移。
Code:
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std;
const int mo = 998244353;
ll ksm(ll x, ll y) {
ll s = 1;
for(; y; y /= 2, x = x * x % mo)
if(y & 1) s = s * x % mo;
return s;
}
typedef vector<ll> V;
#define pb push_back
#define si size()
namespace ntt {
const int nm = 131072;
ll a[nm], b[nm], w[nm]; int r[nm];
void build() {
for(int i = 1; i < nm; i *= 2) ff(j, 0, i)
w[i + j] = ksm(3, (mo - 1) / 2 / i * j);
}
void dft(ll *a, int n, int f) {
ff(i, 0, n) {
r[i] = r[i / 2] / 2 + (i & 1) * (n / 2);
if(i < r[i]) swap(a[i], a[r[i]]);
} ll b;
for(int i = 1; i < n; i *= 2) for(int j = 0; j < n; j += 2 * i)
ff(k, 0, i) b = a[i + j + k] * w[i + k], a[i + j + k] = (a[j + k] - b) % mo, a[j + k] = (a[j + k] + b) % mo;
if(f == -1) {
reverse(a + 1, a + n);
b = ksm(n, mo - 2);
ff(i, 0, n) a[i] = (a[i] + mo) * b % mo;
}
}
void fft(V &p, V &q) {
int p0 = p.si + q.si - 1;
int n = 1; while(n <= p0) n *= 2;
ff(i, 0, n) a[i] = b[i] = 0;
ff(i, 0, p.si) a[i] = p[i];
ff(i, 0, q.si) b[i] = q[i];
dft(a, n, 1); dft(b, n, 1);
ff(i, 0, n) a[i] = a[i] * b[i] % mo;
dft(a, n, -1);
p.resize(p0);
ff(i, 0, p0) p[i] = a[i];
}
}
V operator * (V a, V b) {
ntt :: fft(a, b);
return a;
}
const int N = 50005;
int n;
ll f[N][2][2], g[N], h[N][2], ans;
void dp(int x, int y, int m, int u, int v) {
V p, q;
p.resize(m - x + 1);
fo(i, x, m) p[i - x] = h[i][u];
q.resize(y - x + 1);
ff(i, 0, q.si) q[i] = f[i][u][v];
p = p * q;
fo(i, m + 1, y) h[i][v] = (h[i][v] + p[i - x]) % mo;
}
void dg(int x, int y) {
if(x == y) return;
int m = x + y >> 1;
dg(x, m);
fo(u, 0, 1) fo(v, 0, 1) dp(x, y, m, u, v);
dg(m + 1, y);
}
int main() {
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
ntt :: build();
scanf("%d", &n);
g[0] = 1;
fo(i, 1, n) g[i] = ((i < 2 ? 0 : g[i - 2]) + (i < 4 ? 0 : g[i - 4])) % mo;
fo(i, 1, n) fo(j, 0, 1) fo(k, 0, 1)
f[i][j][k] = (i - 1 - j - k >= 0) ? g[i - 1 - j - k] * (i - 1) % mo * (i - 1) % mo: 0;
h[0][0] = 1;
dg(0, n - 1);
fo(i, 0, n - 1) fo(v, 0, 1) ans = (ans + h[i][v] * f[n - i][v][0] % mo * (n - i)) % mo;
memset(h, 0, sizeof h); h[0][1] = 1;
dg(0, n - 1);
fo(i, 0, n - 1) fo(v, 0, 1) ans = (ans + h[i][v] * f[n - i][v][1] % mo * (n - i)) % mo;
pp("%lld\n", ans);
}
CF 848E(动态规划+分治NTT)的更多相关文章
- 【BZOJ3992】序列统计(动态规划,NTT)
[BZOJ3992]序列统计(动态规划,NTT) 题面 BZOJ 题解 最裸的暴力 设\(f[i][j]\)表示前\(i\)个数,积在膜意义下是\(j\)的方案数 转移的话,每次枚举一个数,直接丢进去 ...
- CF 528D. Fuzzy Search NTT
CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
- 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...
- loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...
- hdu5279 YJC plays Minecraft 【分治NTT】
题目链接 hdu5279 题解 给出若干个完全图,然后完全图之间首尾相连并成环,要求删边使得两点之间路径数不超过\(1\),求方案数 容易想到各个完全图是独立的,每个完全图要删成一个森林,其实就是询问 ...
随机推荐
- linux中的read_link
readlink是linux系统中一个常用工具,主要用来找出符号链接所指向的位置. readlink 获取当前进程对应proc/self/exe]:shell中 readlink /proc/sel ...
- React 使用antd 清空表单
handleResetClick = e => { this.props.form.resetFields();};
- Map集合类(一.hashMap源码解析jdk1.8)
java集合笔记一 java集合笔记二 java集合笔记三 jdk 8 之前,其内部是由数组+链表来实现的,而 jdk 8 对于链表长度超过 8 的链表将转储为红黑树 1.属性 //节点数组,第一次使 ...
- 对AngularJs的简单了解
一.简单介绍 AngularJS是为了克服HTML在构建应用上的不足而设计的.HTML是一门很好的为静态文本展示设计的声明式语言,但要构建WEB应用的话它就显得乏力了.所以我做了一些工作(你也可以觉得 ...
- 赋能时空云计算,阿里云数据库时空引擎Ganos上线
随着移动互联网.位置感知技术.对地观测技术的快速发展,时空信息已从传统GIS行业渗透到大众应用及各行各业.从静态POI(兴趣点)到APP位置信息,从导航电子地图到车辆行驶轨迹,从卫星影像到三维城市建模 ...
- 浏览器表单默认记忆功能input的 autocomplete="off"属性
一般情况下浏览器会有自动记录密码等的功能,但是有时候我们不需要这样的功能,下面有两种情况下关闭记忆功能有效: 1:在form中,如果有input[type=password],autocomplete ...
- [NOIP模拟测试10]辣鸡(ljh) 题解
首先计算块内贡献,很显然是$(x_2-x_1)*(y_2-y_1)*2$. 然后考虑矩形之间的贡献,sort一遍分类讨论$n^2$暴力即可. 注意考虑边界情况是否能多两个,以及角对角的情况. 另外,排 ...
- TLS/SSL 协议 - ServerHello
ServerHello ServerHello消息的意义是将服务器选择的连接参数传送回客户端.这个消息的结构与ClientHello类似,只是每个字段只包含一个选项. 服务器无需支持客户端支持的最佳版 ...
- (转载)理解和使用Promise.all和Promise.race
声明:本文转载自:https://www.jianshu.com/p/7e60fc1be1b2 一.Pomise.all的使用 Promise.all可以将多个Promise实例包装成一个新的Prom ...
- 剑指offer——66翻转字符串
题目描述 牛客最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fish写的内容颇感兴趣,有一天他向Fish借来翻看,但却读不懂它的意思.例如,“student ...