题目大意:

输入n,m ;二叉树

输出 n个点分为m层 的方案数; 每个点的分支要么是0要么是2

Sample Input

5 3

Sample Output

2

即 两个方案为
         O                     O
        /   \                   /   \
      O    O     和      O    O
     /   \                          /   \
   O    O                     O    O
 
 
关于 dp[ i ][ j ] = dp[ i ][ j ] + dp[ i-1-k ][ j-1 ] * dp[ k ][ j-1 ]  
可以这样理解,i 个点分为 j 层时
先取出一个点做根节点为第一层 剩下 i-1 个点则分为左右两大支
则此时 i-1 个点被分为两大支,且每支应分为 j-1 层 
则 (i-1-k 分为 j-1 层的方案)*(k 分为 j-1 层的方案)= i 分为 j 层的方案
 
 
 
 
#include <bits/stdc++.h>
#define MOD 9901
using namespace std;
int dp[][];
int main() {
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(dp,,sizeof(dp));
for(int j=;j<=m;j++)
for(int i=;i<=n;i+=)
{
if(i==) dp[i][j]=;
for(int k=;k<=i-;k+=)
dp[i][j]=(dp[i][j]+dp[i--k][j-]*dp[k][j-])%MOD;
}
printf("%d\n",(dp[n][m]-dp[n][m-]+MOD)%MOD);
}
return ;
}

UASCO Cow Pedigrees /// oj10140的更多相关文章

  1. 洛谷P1472 奶牛家谱 Cow Pedigrees

    P1472 奶牛家谱 Cow Pedigrees 102通过 193提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 农民约翰准备 ...

  2. USACO 2.3 Cow Pedigrees

    Cow Pedigrees Silviu Ganceanu -- 2003 Farmer John is considering purchasing a new herd of cows. In t ...

  3. 【USACO 2.3】Cow Pedigrees(DP)

    问n个结点深度为k且只有度为2或0的二叉树有多少种. dp[i][j]=dp[lk][ln]*dp[rk][j-1-ln],max(lk,rk)=i-1. http://train.usaco.org ...

  4. USACO Section 2.3 奶牛家谱 Cow Pedigrees

    OJ:http://www.luogu.org/problem/show?pid=1472 #include<iostream> using namespace std; const in ...

  5. USACO Cow Pedigrees 【Dp】

    一道经典Dp. 定义dp[i][j] 表示由i个节点,j 层高度的累计方法数 状态转移方程为: 用i个点组成深度最多为j的二叉树的方法树等于组成左子树的方法数 乘于组成右子树的方法数再累计. & ...

  6. p1472 Cow Pedigrees

    用dp[i][j]记录i个点,组成深度恰好为j的方案数.arr[i][j]记录i个点,深度<=j的方案数.那么dp[i][j]只有i为奇数时不为0.而arr[i][j]等于dp[i][j]的前缀 ...

  7. P1472 奶牛家谱 Cow Pedigrees

    题意:问你指定二叉树有几种 1.高度为k 2.节点数为n 3.每个点的度为0或2 爆搜------->30分QAQ 首先,因为每个节点度为0或2, 所以如果n是偶数直接输出0就行了吧(嘿嘿) 如 ...

  8. USACO Section2.3 Cow Pedigrees 解题报告 【icedream61】

    nocows解题报告------------------------------------------------------------------------------------------ ...

  9. 【dp】奶牛家谱 Cow Pedigrees

    令人窒息的奶牛题 题目描述 农民约翰准备购买一群新奶牛. 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛.这些奶牛间的关系可以用二叉树来表示.这些二叉树总共有N个节点(3 <= N < ...

随机推荐

  1. SQL Server中配置ODBC数据源

    单击“开始→windows系统→控制面板”,打开控制面板 单击“管理工具→ODBC数据源(32位)”打开ODBC数据源配置对话框 在数据源配置对话框中单击“系统DSN”选项卡下的“添加”按钮,创建数据 ...

  2. 引入CSS样式表(书写位置)

    CSS可以写到那个位置? 是不是一定写到html文件里面呢? 内部样式表 内嵌式是将CSS代码集中写在HTML文档的head头部标签中,并且用style标签定义,其基本语法格式如下: <head ...

  3. NOIp2018集训test-10-15 (bike day1)

    B 君的第一题 求斐波那契数列模n的循环节. 1.暴力bsgs,毕姥爷好像说循环节最大是6*n还是多少的,反之比较小,直接bsgs这题是可以过的.但是我非常蠢重载运算符的时候把相等返回成了小于,然后根 ...

  4. NOIp2018集训test-9-2(pm)

    其实这套题我爆0了,T1define 写成ddefine编译错误 T2有两个变量爆int 但是我看zwh不在悄悄地改了,我心里还是十分愧疚(没有)的.主要是林巨已经虐我125了要是再虐我200分我大概 ...

  5. csp-s模拟测试91

    csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...

  6. nagios监控实用教程

    nagios监控实用教程 Nagios作为开源网络监视工具,它不但可以有效的监控内存.流量.数据库使用情况.它还可以Windows.Linux主机状态.本专题收录了有关Nagios监控相关文章,供大家 ...

  7. 金三银四铜五铁六,Offer收到手软!

    作者:鲁班大师 来源:cnblogs.com/zhuoqingsen/p/interview.html 文中的鲁班简称LB 据说,金三银四,截止今天为止面试黄金时间已经过去十之八九,而LB恰逢是这批面 ...

  8. Hadoop搭建,上传文件时出现错误,没有到主机的路由

    解决方案:(1)从namenode主机ping其它slaves节点的主机名(注意是slaves节点的主机名),如果ping不通,原因可能是namenode节点的/etc/hosts 未配置主机名与IP ...

  9. Android读取logcat信息

    测试的时候,经常遇到开发需要logcat分析定位bug,今天简单记录一下获取logcat的方法 前提条件:电脑中要安装好Android SDK 1.cmd 进入到这个界面 2.电脑连上手机,手机记得打 ...

  10. 使用python和tushare股票交易日历数据,判断节假日周末休市

    接口:trade_cal 描述:获取各大交易所交易日历数据,默认提取的是上交所 注:tushare模块下载和安装教程,请查阅我之前的文章 输入参数 名称       |       类型        ...