\[\Large\displaystyle \int_{0}^{1}\left \{ \frac{1}{x} \right \}\mathrm{d}x~,~\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{2}\mathrm{d}x~,~\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{3}\mathrm{d}x\]


\(\Large\mathbf{Solution:}\)
1.
\[\begin{align*}
{\int_{0}^{1}\left \{ \frac{1}{x} \right \}\mathrm{d}x} &= \int_{1}^{\infty }\frac{\left \{ t \right \}}{t^{2}}\mathrm{d}t=\sum_{k=1}^{\infty }\int_{k}^{k+1}\frac{t-k}{t^{2}}\mathrm{d}t\\
&=\sum_{k=1}^{\infty }\left ( \ln\frac{k+1}{k}-\frac{1}{k+1} \right )\\
&=\Large\boxed{\color{blue}{1-\gamma}}
\end{align*}\]


2.我们计算比较一般的情况
\[\int_{0}^{1}\left \{ \frac{k}{x} \right \}^{2}\mathrm{d}x = k\int_{k}^{\infty }\frac{\left \{ t \right \}}{t^{2}}\mathrm{d}t=k\sum_{m=k}^{\infty }\left ( 2-2m\ln \frac{m+1}{m}-\frac{1}{m+1}\right )\]
令\(\displaystyle S_{n}=\sum_{m=k}^{n }\left ( 2-2m\ln \frac{m+1}{m}-\frac{1}{m+1}\right )\),我们有
\[\begin{align*}
S_{n}&=\sum_{m=k}^{n }\left ( 2-2m\ln \frac{m+1}{m}-\frac{1}{m+1}\right )\\
&=2\left ( n-k+1 \right )-\left ( \frac{1}{k+1}+\frac{1}{k+2}+\cdots +\frac{1}{k+n} \right )\\
&~~~~-2n\ln\left ( n+1 \right )+2k\ln k+2\ln n!-2\ln k!
\end{align*}\]
由\(2\ln n!\sim \ln\left ( 2\pi \right )+\left ( 2n+1 \right )\ln n-2n\),得
\[\begin{align*}
S_{n} &\sim 2\left ( 1-k \right )+\ln\left ( 2\pi \right )+2k\ln k-2\ln k!-2n\ln\frac{n+1}{n}\\
&~~~~-\left ( \frac{1}{k+1}+\cdots +\frac{1}{n+1}-\ln n \right )
\end{align*}\]
所以
\[\lim_{n\rightarrow \infty }S_{n}=\ln\left ( 2\pi \right )-\gamma +1+\frac{1}{2}+\cdots +\frac{1}{k}+2k\ln k-2k-2\ln k!\]
因此,当\(k=1\),则有
\[\Large\boxed{\displaystyle \int_{0}^{1}\left \{ \frac{1}{x} \right \}^{2}\mathrm{d}x=\color{Blue}{ \ln \left (2\pi \right ) -\gamma -1}}
\]


3.
\[\begin{align*}
\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{3}\mathrm{d}x &= \int_{1}^{\infty }\frac{\left \{ t \right \}^{3}}{t^{2}}\mathrm{d}t=\sum_{k=1}^{\infty }\int_{k}^{k+1}\frac{\left ( t-k \right )^{3}}{t^{2}}\mathrm{d}t\\
&=\sum_{k=1}^{\infty }\left ( 3k^2\ln\frac{k+1}{k}+\frac{3}{2}-3k-\frac{1}{k+1} \right )
\end{align*}\]
令\(\displaystyle S_{n}=\sum_{k=1}^{n }\left ( 3k^2\ln\frac{k+1}{k}+\frac{3}{2}-3k-\frac{1}{k+1} \right )\),简单计算得
\[S_{n}=1-\left ( 1+\frac{1}{2}+\cdots +\frac{1}{n+1}-\ln n \right )-\frac{3}{2}n^{2}-\ln n+3\sum_{k=1}^{n}k^2\ln\frac{k+1}{k}\]
其中
\[\begin{align*}
&\sum_{k=1}^{n}k^2\ln\frac{k+1}{k} =\ln\prod_{k=1}^{n}\left ( \frac{k+1}{k} \right )^{k^{2}}=\ln\left [ \frac{\left ( n+1 \right )^{n^{2}}\cdot n!}{\left ( 2^{2}\cdot 3^{3}\cdots n^{n} \right )^{2}} \right ]\\
\Rightarrow &-\frac{3}{2}n^{2}-\ln n+3\sum_{k=1}^{n}k^2\ln\frac{k+1}{k}=\ln\left [ \frac{\left ( n+1 \right )^{3n^2}\cdot \left ( n! \right )^{3}}{\left ( 2^{2}\cdot 3^{3}\cdots n^{n} \right )^{6}\cdot e^{\frac{3n^{2}}{2}}\cdot n} \right ]
\end{align*}\]

\[a_{n}=\frac{\left ( n+1 \right )^{3n^2}\cdot \left ( n! \right )^{3}}{\left ( 2^{2}\cdot 3^{3}\cdots n^{n} \right )^{6}\cdot e^{\frac{3n^{2}}{2}}\cdot n}=\frac{n^{3n^2+3n+\frac{1}{2}}\cdot e^{-\frac{3n^{2}}{2}}}{\left ( 2^{2}\cdot 3^{3}\cdots n^{n} \right )^{6}}\cdot \frac{\left ( n+1 \right )^{3n^{2}}\cdot \left ( n! \right )^{3}}{n^{3n^2+3n+\frac{3}{2}}}\]
易知第一部分的极限为\(\dfrac{1}{\mathbf{A}^{6}}\),对于第二部分,使用 Stirling's formula \(\displaystyle n!\sim \sqrt{2\pi n}\left ( \frac{n}{e} \right )^{n}\) 有
\[\frac{\left ( n+1 \right )^{3n^{2}}\cdot \left ( n! \right )^{3}}{n^{3n^2+3n+\frac{3}{2}}}\sim \left ( 2\pi \right )^{\frac{3}{2}}\left [ \left ( \frac{n+1}{n} \right )^{n}\frac{1}{e} \right ]^{3n}\rightarrow \left ( 2\pi \right )^{\frac{3}{2}}e^{-\frac{3}{2}}\]
所以 \(\displaystyle x_{n}\rightarrow \frac{\left ( 2\pi \right )^{\frac{3}{2}}e^{-\frac{3}{2}}}{\mathbf{A}^{6}}\),由此可得
\[\Large\boxed{\displaystyle {\int_{0}^{1}\left \{ \frac{1}{x} \right \}^{3}\mathrm{d}x}=\color{blue}{-\frac{1}{2}-\gamma +\frac{3}{2}\ln\left ( 2\pi \right )-6\ln \mathbf{A}}}
\]

一组关于{x}的积分的更多相关文章

  1. Harris角点

    1. 不同类型的角点 在现实世界中,角点对应于物体的拐角,道路的十字路口.丁字路口等.从图像分析的角度来定义角点可以有以下两种定义: 角点可以是两个边缘的角点: 角点是邻域内具有两个主方向的特征点: ...

  2. Harris角点(转载)

    1. 不同类型的角点 在现实世界中,角点对应于物体的拐角,道路的十字路口.丁字路口等.从图像分析的角度来定义角点可以有以下两种定义: 角点可以是两个边缘的角点: 角点是邻域内具有两个主方向的特征点: ...

  3. Spring py登陆模块(包含 记录登陆时间,记录ip,增加积分)

    嘛基于最近的复习准备写个关于spring登陆模块的小程序 虽然小但是五脏俱全呐 话不多说让我来介绍一下今天的登陆程序. 这些是 基于Spring JDBC 的持久层实现 基于Spring 声明事物的业 ...

  4. 关于mpi的理论知识以及编写程序来实现数据积分中的梯形积分法。

    几乎所有人的第一个程序是从“hello,world”程序开始学习的 #include "mpi.h" #include <stdio.h> int main(int a ...

  5. TOJ4439微积分――曲线积分(数学,模拟)

    传送门:点我 格林公式P,Q为关于x,y的函数. 现在为了方便起见,现给出x的积分上限1,积分下限0, y的积分上限x,积分下限0. P只是关于Y的函数,Q只是关于X的函数. 输入 开始输入为测试组数 ...

  6. 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

    浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...

  7. Ecshop的积分商城-对不起,该商品库存不足,现在不能兑换

    1. 打开Ecshop积分商城文件 "根目录/exchange.php" 发现248行与289行都有库存不足时报错的提示代码: 248行:     /* 查询:检查兑换商品是否有库 ...

  8. 关于Euler-Poisson积分的几种解法

    来源:https://www.cnblogs.com/Renascence-5/p/5432211.html 方法1:因为积分值只与被积函数和积分域有关,与积分变量无关,所以\[I^{2}=\left ...

  9. 势流理论笔记:03 Hess-Smith积分方法

    书接上回势流理论笔记:02 直接法与间接法 Hess-Smith方法 采用面向对象编程的思路,\(Matlab\)程序脚本,实现以下功能: 输入面元(四边形面元顶点坐标) 输出系数矩阵\([H][M] ...

随机推荐

  1. IntelliJ IDEA构建多Module项目

    打开IDEA 创建完成项目后,我们创建子模块 可以看到common子模块创建成功,子模块的名字大家可以根据自己的实际需求来修改 下面我们再创建子模块 给子模块起个名字 现在已经创建好多模块的项目了,下 ...

  2. eclipse的安装和环境配置

    一,eclipse下载 地址:https://www.eclipse.org/downloads/ 一般浏览器都有翻译功能 二.有32位和64位的版本根据自己的需求下载,选下载的选下载量最多的下载. ...

  3. 使用Unity3d和C#的一些属性来设置特殊行为

    使用 Unity 的C#语言 ,利用属性(Attribute)来类定义和变量定义或区分其他的变量,您可以设置一种特殊行为 例如,您添加[SerializeField]属性变量,私有变量标识序列化. [ ...

  4. C++-POJ1020-Anniversary Cake[搜索][dfs]

    #include <set> #include <map> #include <cmath> #include <queue> #include < ...

  5. 题解【洛谷P2323】 [HNOI2006]公路修建问题

    题面 题解 跑两遍\(Kruskal\),第一次找出\(k\)条一级公路,第二次找出\(n - k - 1\)条二级公路,直接计算\(MST\)的权值之和即可. 代码 #include <ios ...

  6. calloc函数的使用和对内存free的认识

    #include<stdlib.h> void *calloc(size_t n, size_t size): free(); 目前的理解:  n是多少个这样的size,这样的使用类似有f ...

  7. Vue-cli3 项目配置 Vue.config.js( 代替vue-cli2 build config)

    Vue-cli3 搭建的项目 界面相对之前较为简洁 之前的build和config文件夹不见了,那么应该如何配置 如webpack等的配那 只需要在项目的根目录下新建 vue.config.js 文件 ...

  8. makecert 产出证书

    C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Bin>makecert -r -n // -e // -sv mymuse.pvk my ...

  9. Spring Boot 2.x基础教程:找回启动日志中的请求路径列表

    如果您看过之前的Spring Boot 1.x教程,或者自己原本就对Spring Boot有一些经验,或者对Spring MVC很熟悉.那么对于Spring构建的Web应用在启动的时候,都会输出当前应 ...

  10. 8.7-Day1T1

    题目大意: T组测试数据,每组测试数据给出一个n,求[0,n-1]所有逆元的和.(n可能不为质数) 题解: 我的想法: 求出每一个数的逆元,再相加.由于有n为质数的时候,所以,我将它分为两种情况:(1 ...