直接用matplotlib画出直方图

def plot_demo(image):
plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开,256为bins数量,[0, 256]为范围
plt.show()

图像直方图

def image_hist(image):
color = ('blue', 'green', 'red')
for i, color in enumerate(color): # 计算出直方图,calcHist(images, channels, mask, histSize(有多少个bin), ranges[, hist[, accumulate]]) -> hist
# hist 是一个 256x1 的数组,每一个值代表了与该灰度值对应的像素点数目。 hist = cv.calcHist(image, [i], None, [256], [0, 256])
print(hist.shape)
plt.plot(hist, color=color)
plt.xlim([0, 256])
plt.show()

直方图均值化

是图像增强的一个手段

def equalHist_demo(image):
gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) # 全局直方图均衡化,用于增强图像对比度,即黑的更黑,白的更白
dst = cv.equalizeHist(gray)
cv.imshow("equalHist_demo", dst) # 局部直方图均衡化
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
clahe_dst = clahe.apply(gray)
cv.imshow("clahe", clahe_dst)

直方图比较

# 创建直方图
def create_rgb_demo(image):
h, w, c = image.shape
rgbHist = np.zeros([16*16*16, 1], np.float32)
bsize = 256 / 16
for row in range(h):
for col in range(w):
b = image[row, col, 0]
g = image[row, col, 1]
r = image[row, col, 2]
index = np.int(b/bsize)*16*16 + np.int(g/bsize)*16 + np.int(r/bsize)
rgbHist[np.int(index), 0] = rgbHist[np.int(index), 0] + 1 return rgbHist # 利用直方图比较相似性,用巴氏和相关性比较好
def hist_compare(image1, image2):
hist1 = create_rgb_demo(image1)
hist2 = create_rgb_demo(image2)
match1 = cv.compareHist(hist1, hist2, method=cv.HISTCMP_BHATTACHARYYA)
match2 = cv.compareHist(hist1, hist2, method=cv.HISTCMP_CORREL)
match3 = cv.compareHist(hist1, hist2, method=cv.HISTCMP_CHISQR)
print("巴式距离:%s, 相关性:%s, 卡方:%s"%(match1, match2, match3))

直方图反向投影

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt def hist2d_demo(image):
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
hist = cv.calcHist([image], [0, 1], None, [180, 360], [0, 180, 0, 256]) # 计算直方图
print(hist.shape)
# cv.imshow("hist2d_demo", hist)
plt.imshow(hist, interpolation="nearest") # 直方图显示
plt.title("2D Histogram")
plt.show() # OpenCV 提供的函数 cv2.calcBackProject() 可以用来做直方图反向 投影。
# 它的参数与函数 cv2.calcHist 的参数基本相同。其中的一个参数是我 们要查找目标的直方图。
# 同样再使用目标的直方图做反向投影之前我们应该先对其做归一化处理。
# 返回的结果是一个概率图像
def back_projection_demo():
"""
反向投影可以用来做图像分割,或者在图像中找寻我们感兴趣的部分。
它会输出与输入图像(待搜索)同样大小的图像,其中的每一个像素值代表了输入图像上对应点属于目标对象的概率。
输出图像中像素值越高(越白)的点就越可能代表我们要搜索的目标 (在输入图像所在的位置)。
直方图投影经常与camshift 算法等一起使用。
步骤:
1. 为一张包含我们要查找目标的图像创建直方图,我们要查找的对象要尽量占满这张图像。
最好使用颜色直方图,因为一个物体的颜色要比它的灰 度能更好的被用来进行图像分割与对象识别。
2. 们再把这个颜色直方图投 影到输入图像中寻找我们的目标,
也就是找到输入图像中的每一个像素点的像素值在直方图中对应的概率,这样我们就得到一个概率图像。
3. 设置适当的阈值对概率图像进行二值化
"""
sample = cv.imread("../images/roi.png")
target = cv.imread("../images/CrystalLiu3.jpg")
roi_hsv = cv.cvtColor(sample, cv.COLOR_BGR2HSV)
target_hsv = cv.cvtColor(target, cv.COLOR_BGR2HSV) cv.imshow("sample", sample)
cv.imshow("target", target) roiHist = cv.calcHist([roi_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256]) # 归一化:原始图像,结果图像,映射到结果图像中的最小值,最大值,归一化类型
# cv.NORM_MINMAX对数组的所有值进行转化,使它们线性映射到最小值和最大值之间
# 归一化后的图像便于显示,归一化后到0,255之间了
cv.normalize(roiHist, roiHist, 0, 255, cv.NORM_MINMAX)
dst = cv.calcBackProject([target_hsv], [0, 1], roiHist, [0, 180, 0, 256], 1)
cv.imshow("backProjectionDemo", dst) if __name__ == '__main__':
src = cv.imread("../images/CrystalLiu1.jpg") # 读入图片放进src中
cv.namedWindow("Crystal Liu") # 创建窗口
cv.imshow("Crystal Liu", src) # 将src图片放入该创建的窗口中
hist2d_demo(src)
# back_projection_demo() cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
cv.destroyAllWindows() # 关闭所有窗口

opencv python:图像直方图 histogram的更多相关文章

  1. 8、OpenCV Python 图像直方图

    __author__ = "WSX" import cv2 as cv import numpy as np from matplotlib import pyplot as pl ...

  2. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  3. 【图像处理】基于OpenCV实现图像直方图的原理

    背景 图像的直方图是衡量图像像素分布的一种方式,可以通过分析像素分布,使用直方图均衡化对图像进行优化,让图像变的清晰. opencv官方对图像直方图的定义如下: 直方图是图像中像素强度分布的图形表达方 ...

  4. OpenCV(7)-图像直方图

    直方图定义可参考这里.图像的直方图用来表示图像像素的统计信息,它统计了图像每一个通道(如果是多通道)中,每个像素的个数(比例). 计算直方图 OpenCV提供了直接计算直方图的函数 void calc ...

  5. OPENCV(5) —— 图像直方图

    新版本对直方图不再使用之前的histogram的形式,而是用统一的Mat或者MatND的格式来存储直方图,可见新版本Mat数据结构的优势. C++: void calcHist(const Mat* ...

  6. 11、OpenCV Python 图像金字塔

    __author__ = "WSX" import cv2 as cv import numpy as np # 高斯金字塔 #金字塔 原理 ==> 高斯模糊+ 降采样 #金 ...

  7. 10、OpenCV Python 图像二值化

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...

  8. 1、OpenCV Python 图像加载和保存

    __author__ = "WSX" import cv2 as cv # 这里的文件是图片或者视频 def Save_File( image ): cv.imwrite(&quo ...

  9. opencv:图像直方图均衡化

    // 直方图均衡化 Mat gray, dst; cvtColor(src, gray, COLOR_BGR2GRAY); equalizeHist(gray, dst); imshow(" ...

随机推荐

  1. pytest学习2-运行方式

    pytest常用运行方式 运行目录及子包下的所有用例: pytest 目录名 运行指定模块所有用例: pytest test_reg.py pytest test_reg.py::TestClass: ...

  2. 在多租户(容器)数据库中如何创建PDB:方法1 从种子创建PDB

    基于版本:19c (12.2.0.3) AskScuti 创建方法:从零开始创建一个PDB(从PDB$SEED创建新的PDB) 对应路径:Creating a PDB --> Creating ...

  3. 刷题75. Sort Colors

    一.题目说明 题目75. Sort Colors,给定n个整数的列表(0代表red,1代表white,2代表blue),排序实现相同颜色在一起.难度是Medium. 二.我的解答 这个是一个排序,还是 ...

  4. Echarts使用一个图例legend实现全选和全部取消的功能

    1.修改legend的data值,在前面加上全选和全不选,data = ['全选','全不选',1,2,3] 2.监听 legendselectchanged事件 / 使用刚指定的配置项和数据显示图表 ...

  5. AcWing 913. 排队打水

    #include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; in ...

  6. codeforces Codeforces Round #597 (Div. 2) Constanze's Machine 斐波拉契数列的应用

    #include<bits/stdc++.h> using namespace std; ]; ]; ; int main() { dp[] = ; scanf(); ); ; i< ...

  7. mongo gridfs 学习

    一.mongo是啥东西? MongoDB 是由C++语言编写的,基于分布式文件存储的开源数据库系统.在高负载的情况下,添加更多的节点,可以保证服务器性能. 二.gridfs是啥东西? 1.MongoD ...

  8. Java爬虫学习(3)之用对象保存新浪微博博文

    package com.mieba; import us.codecraft.webmagic.Page; import us.codecraft.webmagic.Site; import us.c ...

  9. 【C语言】多维数组

    C 语言支持多维数组.多维数组声明的一般形式如下: type name[size1][size2]...[sizeN]; 二维数组 多维数组最简单的形式是二维数组.一个二维数组,在本质上,是一个一维数 ...

  10. Python记:通用的序列操作之成员资格(听起来倒是有些抽象的!)

    ______________________________永远守护这一尘不染的真心! 要检查特定的值是否包含在序列中,可使用运算符in.它检查是否满足指定的条件,并返回相应的值:满足时返回True, ...