torch.optim优化算法理解之optim.Adam()
torch.optim是一个实现了多种优化算法的包,大多数通用的方法都已支持,提供了丰富的接口调用,未来更多精炼的优化算法也将整合进来。
为了使用torch.optim,需先构造一个优化器对象Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数。
要构建一个优化器optimizer,你必须给它一个可进行迭代优化的包含了所有参数(所有的参数必须是变量s)的列表。 然后,您可以指定程序优化特定的选项,例如学习速率,权重衰减等。
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr = 0.0001)
self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
- 1
- 2
- 3
Optimizer还支持指定每个参数选项。 只需传递一个可迭代的dict来替换先前可迭代的Variable。dict中的每一项都可以定义为一个单独的参数组,参数组用一个params键来包含属于它的参数列表。其他键应该与优化器接受的关键字参数相匹配,才能用作此组的优化选项。
optim.SGD([
{'params': model.base.parameters()},
{'params': model.classifier.parameters(), 'lr': 1e-3}
], lr=1e-2, momentum=0.9)
- 1
- 2
- 3
- 4
如上,model.base.parameters()将使用1e-2的学习率,model.classifier.parameters()将使用1e-3的学习率。0.9的momentum作用于所有的parameters。
优化步骤:
所有的优化器Optimizer都实现了step()方法来对所有的参数进行更新,它有两种调用方法:
optimizer.step()
- 1
这是大多数优化器都支持的简化版本,使用如下的backward()方法来计算梯度的时候会调用它。
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
- 1
- 2
- 3
- 4
- 5
- 6
optimizer.step(closure)
- 1
一些优化算法,如共轭梯度和LBFGS需要重新评估目标函数多次,所以你必须传递一个closure以重新计算模型。 closure必须清除梯度,计算并返回损失。
for input, target in dataset:
def closure():
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
return loss
optimizer.step(closure)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
Adam算法:
adam算法来源:Adam: A Method for Stochastic Optimization
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。它的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。其公式如下:
其中,前两个公式分别是对梯度的一阶矩估计和二阶矩估计,可以看作是对期望E|gt|,E|gt^2|的估计;
公式3,4是对一阶二阶矩估计的校正,这样可以近似为对期望的无偏估计。可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整。最后一项前面部分是对学习率n形成的一个动态约束,而且有明确的范围。
class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
- 1
参数:
params(iterable):可用于迭代优化的参数或者定义参数组的dicts。
lr (float, optional) :学习率(默认: 1e-3)
betas (Tuple[float, float], optional):用于计算梯度的平均和平方的系数(默认: (0.9, 0.999))
eps (float, optional):为了提高数值稳定性而添加到分母的一个项(默认: 1e-8)
weight_decay (float, optional):权重衰减(如L2惩罚)(默认: 0)
- 1
- 2
- 3
- 4
- 5
step(closure=None)函数:执行单一的优化步骤
closure (callable, optional):用于重新评估模型并返回损失的一个闭包
- 1
- 2
torch.optim.adam源码:
import math
from .optimizer import Optimizer
class Adam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps,weight_decay=weight_decay)
super(Adam, self).__init__(params, defaults)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = grad.new().resize_as_(grad).zero_()
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_()
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
return loss
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
Adam的特点有:
1、结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点;
2、对内存需求较小;
3、为不同的参数计算不同的自适应学习率;
4、也适用于大多非凸优化-适用于大数据集和高维空间。
torch.optim优化算法理解之optim.Adam()的更多相关文章
- 优化深度神经网络(二)优化算法 SGD Momentum RMSprop Adam
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch ...
- Adam优化算法
Question? Adam 算法是什么,它为优化深度学习模型带来了哪些优势? Adam 算法的原理机制是怎么样的,它与相关的 AdaGrad 和 RMSProp 方法有什么区别. Adam 算法应该 ...
- PyTorch官方中文文档:torch.optim 优化器参数
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...
- PyTorch-Adam优化算法原理,公式,应用
概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jim ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...
- 优化算法:AdaGrad | RMSProp | AdaDelta | Adam
0 - 引入 简单的梯度下降等优化算法存在一个问题:目标函数自变量的每一个元素在相同时间步都使用同一个学习率来迭代,如果存在如下图的情况(不同自变量的梯度值有较大差别时候),存在如下问题: 选择较小的 ...
- 机器学习中几种优化算法的比较(SGD、Momentum、RMSProp、Adam)
有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速 ...
- 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...
- zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam
首先定义:待优化参数: ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch : 计算目标函数关于当前参数的梯度: 根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...
随机推荐
- jquery源码学习(三)—— jquery.prototype主要属性和方法
上次我们学习了jquery中的主要对象jQuery和一些变量,现在我们开始学习jquery的原型 98行声明了jQuery.fn = jQuery.prototype = {} 285行jQuery. ...
- 常见的php攻击(6种攻击详解)
1.SQL注入 SQL注入是一种恶意攻击,用户利用在表单字段输入SQL语句的方式来影响正常的SQL执行.还有一种是通过system()或exec()命令注入的,它具有相同的SQL注入机制,但只针对sh ...
- WPF数据绑定详解
元素绑定 数据绑定最简单的形式是,源对象是WPF元素而且源属性是依赖属性.依赖项属性具有内置的更改通知支持,当在源对象中改变依赖项属性的值时,会立即更新目标对相中的绑定属性. <!--Xaml程 ...
- Django创建对象的create和save方法
Django的模型(Model)的本质是类,并不是一个具体的对象(Object).当你设计好模型后,你就可以对Model进行实例化从而创建一个一个具体的对象.Django对于创建对象提供了2种不同的s ...
- 视觉暂留-Info:这些神奇的“视觉暂留”动画,每一幅都让人拍案叫绝!
ylbtech-视觉暂留-Info:这些神奇的“视觉暂留”动画,每一幅都让人拍案叫绝! 1.返回顶部 1. 这些神奇的“视觉暂留”动画,每一幅都让人拍案叫绝! 原创|发布:2018-05-28 19: ...
- c# 日期函数
DateTime dt = DateTime.Now;Label1.Text = dt.ToString();//2005-11-5 13:21:25Label2.Text = dt.ToFileTi ...
- ajax请求与form表单提交共存的时候status为canceled
chrome浏览器调试,发现,status竟然是canceled状态 网上总论: 1.在URL变更后,会对当前正在执行的ajax进求进行中止操作.中止后该请求的状态码将为canceled 2.在使用到 ...
- Notepad++搜索中的正则应用
假设要查找文件中所有tppabs="*****" 类型的代码 tppabs="http://www.******.com/templates/Alen/Css/Main. ...
- 如何在Liferay 7中创建一个简单的JSF Portlet
这个将在Liferay IDE 3.1 M3的发布版中提供创建的选项,但是你也可以通过命令行来创建. 1.这是Liferay JSF团队的官网:http://liferayfaces.org/ 你能在 ...
- bzoj1412 狼和羊的故事
Description “狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! O ...