There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it's horizontal, y-coordinates don't matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.

An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.

Example:

Input:
[[10,16], [2,8], [1,6], [7,12]] Output:
2 Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).

这道题给了我们一堆大小不等的气球,用区间范围来表示气球的大小,可能会有重叠区间。然后我们用最少的箭数来将所有的气球打爆。那么这道题是典型的用贪婪算法来做的题,因为局部最优解就等于全局最优解,我们首先给区间排序,我们不用特意去写排序比较函数,因为默认的对于pair的排序,就是按第一个数字升序排列,如果第一个数字相同,那么按第二个数字升序排列,这个就是我们需要的顺序,所以直接用即可。然后我们将res初始化为1,因为气球数量不为0,所以怎么也得先来一发啊,然后这一箭能覆盖的最远位置就是第一个气球的结束点,用变量end来表示。然后我们开始遍历剩下的气球,如果当前气球的开始点小于等于end,说明跟之前的气球有重合,之前那一箭也可以照顾到当前的气球,此时我们要更新end的位置,end更新为两个气球结束点之间较小的那个,这也是当前气球和之前气球的重合点,然后继续看后面的气球;如果某个气球的起始点大于end了,说明前面的箭无法覆盖到当前的气球,那么就得再来一发,既然又来了一发,那么我们此时就要把end设为当前气球的结束点了,这样贪婪算法遍历结束后就能得到最少的箭数了,参见代码如下:

class Solution {
public:
int findMinArrowShots(vector<pair<int, int>>& points) {
if (points.empty()) return ;
sort(points.begin(), points.end());
int res = , end = points[].second;
for (int i = ; i < points.size(); ++i) {
if (points[i].first <= end) {
end = min(end, points[i].second);
} else {
++res;
end = points[i].second;
}
}
return res;
}
};

参考资料:

https://discuss.leetcode.com/topic/66579/java-greedy-soution

https://discuss.leetcode.com/topic/66548/concise-java-solution-tracking-the-end-of-overlapping-intervals

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Minimum Number of Arrows to Burst Balloons 最少数量的箭引爆气球的更多相关文章

  1. [LeetCode] 452. Minimum Number of Arrows to Burst Balloons 最少箭数爆气球

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  2. Leetcode: Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  3. 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)

    [LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...

  4. 贪心:leetcode 870. Advantage Shuffle、134. Gas Station、452. Minimum Number of Arrows to Burst Balloons、316. Remove Duplicate Letters

    870. Advantage Shuffle 思路:A数组的最大值大于B的最大值,就拿这个A跟B比较:如果不大于,就拿最小值跟B比较 A可以改变顺序,但B的顺序不能改变,只能通过容器来获得由大到小的顺 ...

  5. [LeetCode] 452 Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  6. [Leetcode 452] 最少需要射出多少支箭Minimum Number of Arrows to Burst Balloons 贪心 重载

    [题目] There are a number of spherical balloons spread in two-dimensional space. For each balloon, pro ...

  7. [Swift]LeetCode452. 用最少数量的箭引爆气球 | Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  8. 452. Minimum Number of Arrows to Burst Balloons——排序+贪心算法

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

  9. 452. Minimum Number of Arrows to Burst Balloons

    There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...

随机推荐

  1. Cesium原理篇:Batch

    通过之前的Material和Entity介绍,不知道你有没有发现,当我们需要添加一个rectangle时,有两种方式可供选择,我们可以直接添加到Scene的PrimitiveCollection,也可 ...

  2. Linux 系统命令笔记

    前言 翻出N年前学习笔记,感觉还有点用,放到博客备忘,自己查看用. 一. 系统命令笔记 1.系统 % /etc/issue           # 查看操作系统版本  %          # 观察系 ...

  3. 从零开始学 Java - Spring 集成 Memcached 缓存配置(二)

    Memcached 客户端选择 上一篇文章 从零开始学 Java - Spring 集成 Memcached 缓存配置(一)中我们讲到这篇要谈客户端的选择,在 Java 中一般常用的有三个: Memc ...

  4. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  5. [转载]iOS 10 UserNotifications 框架解析

    活久见的重构 - iOS 10 UserNotifications 框架解析 TL;DR iOS 10 中以前杂乱的和通知相关的 API 都被统一了,现在开发者可以使用独立的 UserNotifica ...

  6. c/c++常见面试题

    1. C中static有什么作用 (1)隐藏. 当我们同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性,故使用static在不同的文件中定义同名函数和同名变量,而不必担心命 ...

  7. C#开发微信门户及应用(8)-微信门户应用管理系统功能介绍

    最近对微信接口进行深入的研究,通过把底层接口一步步进行封装后,逐步升级到自动化配置.自动化应答,以及后台处理界面的优化和完善上,力求搭建一个较为完善.适用的微信门户应用管理系统. 微信门户应用管理系统 ...

  8. Delphi_09_Delphi_Object_Pascal_面向对象编程

    今天这里讨论一下Delphi中的面向对象编程,这里不做过多过细的讨论,主要做提纲挈领的描述,帮助自己抓做重点. 本随笔分为两部分: 一.面向对象编程 二.面向对象编程详细描述 ------------ ...

  9. WaitGroup is reused before previous Wait has returned

    当你Add()之前,就Wait()了,就会发生这个错误.

  10. 【原】Bootstrap+Knockout.JS+ASP.Net MVC3+PetaPOCO实现CRUD操作

    1.需求: 1.1)页面要美观大气 1.2)前端代码要简洁清晰,要用MVC或是MVVM框架 1.3)服务端要用MVC框架,要Rest风格 1.4)数据访问要用ORM 2.效果: 2.1)列表 2.2) ...