【BZOJ2154】Crash的数字表格(莫比乌斯反演)
【BZOJ2154】Crash的数字表格(莫比乌斯反演)
题面
BZOJ
简化题意:
给定\(n,m\)
求$$\sum_{i=1}n\sum_{j=1}mlcm(i,j)$$
题解
以下的一切都默认\(n<m\)
我们都知道\(lcm(i,j)=\frac{ij}{gcd(i,j)}\)
所以所求化简
\]
看到\(gcd(i,j)\)很不爽,于是就再提出来
\]
也就是
\]
把\(d\)提出来
\]
前面这一堆看起来管不了了
看后面的一段
\]
看到\(n/d\)这种东西很不爽呀
就写成这样吧。。
\]
这种东西怎么求?
令$$f(d)=\sum_{i=1}{x}\sum_{j=1}{y}[gcd(i,j)==d]{ij}$$
根据莫比乌斯反演的常见套路
设
\]
直接把\(d\)提出来
\]
\(1|gcd(i,j)\)是显然成立的
所以$$G(d)=d2\sum_{i=1}{x/d}\sum_{j=1}^{y/d}{ij}$$
这玩意明显可以\(O(1)\)求(相当于两个等差数列相乘)
所以,要求的东西就是$$f(1)=\sum_{i=1}^x\mu(i)G(i)$$
这道题就解决了一大半了
现在我们的复杂度是\(O(n\sqrt n)\)与\(O(n^2)\)之间
需要继续优化
很显然的
\]
这个式子可以数论分块一波,复杂度少了\(O(\sqrt n)\)
还不够
继续看,
\]
这个式子把\(G(x)\)展开
\]
还是可以数论分块
但是要预处理\(\mu(i)*i^2\)的前缀和
然后复杂度就成了\(O(n)\)啦
注释掉的是没用数论分块的式子
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 20101009
#define MAX 12000000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int mu[MAX],pri[MAX],tot;
bool zs[MAX];
int n,m;
int G[MAX],ans;
int smu[MAX],sqr[MAX];
void Getmu()
{
zs[1]=true;mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i]){pri[++tot]=i;mu[i]=-1;}
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{mu[i*pri[j]]=0;break;}
}
}
for(int i=1;i<=n;++i)smu[i]=(smu[i-1]+mu[i]+MOD)%MOD;
}
int Solve(int xx,int yy)
{
long long ans=0;
//for(int i=1;i<=xx;++i)G[i]=1ll*i*i%MOD*1ll*(1ll*(1+xx/i)*(xx/i)/2%MOD)*(1ll*(1+yy/i)*(yy/i)/2%MOD)%MOD;
//for(int i=1;i<=xx;++i)ans=(ans+1ll*mu[i]*G[i]%MOD+MOD)%MOD;
int i=1,j;
while(i<=xx)
{
j=min(xx/(xx/i),yy/(yy/i));
int GG=1ll*(1ll*(1+xx/i)*(xx/i)/2%MOD)*(1ll*(1+yy/i)*(yy/i)/2%MOD)%MOD;
ans+=1ll*(sqr[j]-sqr[i-1])%MOD*GG%MOD;
ans%=MOD;
i=j+1;
}
return (ans+MOD)%MOD;
}
int main()
{
n=read();m=read();
if(n>m)swap(n,m);
Getmu();
for(int i=1;i<=n;++i)sqr[i]=(sqr[i-1]+1ll*i*i%MOD*mu[i]%MOD+MOD)%MOD;
//for(int i=1;i<=n;++i)ans=1ll*((ans+1ll*i*Solve(n/i,m/i))%MOD)%MOD;
int i=1,j;
while(i<=n)
{
j=min(n/(n/i),m/(m/i));
int t=1ll*(i+j)*(j-i+1)/2%MOD;
ans=(ans+1ll*Solve(n/i,m/i)*t%MOD)%MOD;
i=j+1;
}
printf("%d\n",ans);
return 0;
}
【BZOJ2154】Crash的数字表格(莫比乌斯反演)的更多相关文章
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
随机推荐
- LeetCode - 520. Detect Capital
Given a word, you need to judge whether the usage of capitals in it is right or not. We define the u ...
- java json字符串 获取value
java中可以导入有关json的jar包,但是此jar包又得依赖其他的jar包 ,所以需要导入的包如下: 可在这里下载相关jar包,CSDN下载啥都要钱 讨厌死了 还是这个链接好---云盘 htt ...
- 配置Nginx代理服务器
nginx另一个使用的比较多的情况是作为代理服务器,代理服务器接收请求,然后把请求传递到代理服务器,nginx最后会提取代理服务器的回复,并把这些回复发送给客户端.我们将配置一个基本的代理服务器,图片 ...
- PHP入门学习精要
一.文件名 函数.配置文件等其他类库文件之外的一般是以.php为后缀(第三方引入的不做要求): ThinkPHP的模板文件默认是以.html 为后缀(可以通过配置修改): 二.其它命名 其它命名 规则 ...
- Java多线程推荐使用的停止方法和暂停方法
判断线程结束和让线程结束 package cn.lonecloud.Thread.study; /** * 用于循环1000次的线程 * @Title: Run1000Thread.java * @P ...
- 修改maven项目jdk版本,并解决Dynamic Web Module 3.1 requires Java 1.7 or newer错误
使用maven的时候,默认会使用1.5版本的JDK,并且创建项目时也会是1.5版本. 但是我想用JDK1.7版本,所以我手动将maven项目JDK改为1.7版本. 手动修改JDK版本为1.7以后,项目 ...
- 软AP的实现------dhcpserver交叉编译
代码版本:dhcp-4.2.5-P1 cd dhcp--P1; ./configure --host=arm-XXX-linux ac_cv_file__dev_random=yes; cd ./bi ...
- UVA - 1592 Database 枚举+map
思路 直接枚举两列,然后枚举每一行用map依次记录每对字符串出现的是否出现过(字符串最好先处理成数字,这样会更快),如果出现就是"NO",否则就是"YES". ...
- UVA-818 dfs + 位运算
暴力枚举一些圆环,将这些圆环解开,看能否成为单链.判断单链的三个条件: 除了这些删除的圆环之外,其他圆环还连接着的圆环不能超过两个. 剩下的环没有连成圈. 剩下的圆环共分成m堆,每堆之间无连接,m必须 ...
- spring cloud熔断监控Hystrix Dashboard和Turbine
参考: http://blog.csdn.net/ityouknow/article/details/72625646 完整pom <?xml version="1.0" e ...