Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.

Example 1:

Input: 2
Output: 1
Explanation: 2 = 1 + 1, 1 × 1 = 1.

Example 2:

Input: 10
Output: 36
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.

Note: You may assume that n is not less than 2 and not larger than 58.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

这道题给了我们一个正整数n,让拆分成至少两个正整数之和,使其乘积最大。最简单粗暴的方法自然是检查所有情况了,但是拆分方法那么多,怎么才能保证能拆分出所有的情况呢?感觉有点像之前那道 Coin Change,当前的拆分方法需要用到之前的拆分值,这种重现关系就很适合动态规划 Dynamic Programming 来做,我们使用一个一维数组 dp,其中 dp[i] 表示数字i拆分为至少两个正整数之和的最大乘积,数组大小为 n+1,值均初始化为1,因为正整数的乘积不会小于1。可以从3开始遍历,因为n是从2开始的,而2只能拆分为两个1,乘积还是1。i从3遍历到n,对于每个i,需要遍历所有小于i的数字,因为这些都是潜在的拆分情况,对于任意小于i的数字j,首先计算拆分为两个数字的乘积,即j乘以 i-j,然后是拆分为多个数字的情况,这里就要用到 dp[i-j] 了,这个值表示数字 i-j 任意拆分可得到的最大乘积,再乘以j就是数字i可拆分得到的乘积,取二者的较大值来更新 dp[i],最后返回 dp[n] 即可,参见代码如下:

解法一:

class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + , );
for (int i = ; i <= n; ++i) {
for (int j = ; j < i; ++j) {
dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j]));
}
}
return dp[n];
}
};

题目提示中让用 O(n) 的时间复杂度来解题,而且告诉我们找7到 10 之间的规律,那么我们一点一点的来分析:

正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入。

那么2只能拆成 1+1,所以乘积也为1。

数字3可以拆分成 2+1 或 1+1+1,显然第一种拆分方法乘积大为2。

数字4拆成 2+2,乘积最大,为4。

数字5拆成 3+2,乘积最大,为6。

数字6拆成 3+3,乘积最大,为9。

数字7拆为 3+4,乘积最大,为 12。

数字8拆为 3+3+2,乘积最大,为 18。

数字9拆为 3+3+3,乘积最大,为 27。

数字10拆为 3+3+4,乘积最大,为 36。

....

那么通过观察上面的规律,我们可以看出从5开始,数字都需要先拆出所有的3,一直拆到剩下一个数为2或者4,因为剩4就不用再拆了,拆成两个2和不拆没有意义,而且4不能拆出一个3剩一个1,这样会比拆成 2+2 的乘积小。这样我们就可以写代码了,先预处理n为2和3的情况,然后先将结果 res 初始化为1,然后当n大于4开始循环,结果 res 自乘3,n自减3,根据之前的分析,当跳出循环时,n只能是2或者4,再乘以 res 返回即可:

解法二:

class Solution {
public:
int integerBreak(int n) {
if (n == || n == ) return n - ;
int res = ;
while (n > ) {
res *= ;
n -= ;
}
return res * n;
}
};

我们再来观察上面列出的 10 之前数字的规律,我们还可以发现数字7拆分结果是数字4的三倍,而7比4正好大三,数字8拆分结果是数字5的三倍,而8比5大3,后面都是这样的规律,那么我们可以把数字6之前的拆分结果都列举出来,然后之后的数通过查表都能计算出来,参见代码如下;

解法三:

class Solution {
public:
int integerBreak(int n) {
vector<int> dp{, , , , , , };
for (int i = ; i <= n; ++i) {
dp.push_back( * dp[i - ]);
}
return dp[n];
}
};

下面这种解法是热心网友留言告诉博主的,感觉很叼,故而补充上来。是解法一的一种变形写法,不再使用 while 循环了,而是直接分别算出能拆出3的个数和最后剩下的余数2或者4,然后直接相乘得到结果,参见代码如下:

解法四:

class Solution {
public:
int integerBreak(int n) {
if (n == || n == ) return n - ;
if (n == ) return ;
n -= ;
return (int)pow(, (n / + )) * (n % + );
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/343

参考资料:

https://leetcode.com/problems/integer-break/

https://leetcode.com/problems/integer-break/discuss/80694/Java-DP-solution

https://leetcode.com/problems/integer-break/discuss/80785/O(log(n))-Time-solution-with-explanation

https://leetcode.com/problems/integer-break/discuss/80720/Easy-to-understand-C%2B%2B-with-explanation

https://leetcode.com/problems/integer-break/discuss/80689/A-simple-explanation-of-the-math-part-and-a-O(n)-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Integer Break 整数拆分的更多相关文章

  1. [LeetCode] 343. Integer Break 整数拆分

    Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...

  2. 343 Integer Break 整数拆分

    给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积.例如,给定 n = 2,返回1(2 = 1 + 1):给定 n = 10,返回36(10 = 3 ...

  3. [LeetCode]Integer Break(Dp或胡搞或推公式)

    343. Integer Break Given a positive integer n, break it into the sum of at least two positive intege ...

  4. [LeetCode] Integer Replacement 整数替换

    Given a positive integer n and you can do operations as follow: If n is even, replace n with n/2. If ...

  5. [LeetCode] Word Break II 拆分词句之二

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

  6. LeetCode "Integer Break"

    A typical CS style DP based solution: class Solution(object): def __init__(self): self.hm = {} def i ...

  7. LeetCode——Integer Break

    Question Given a positive integer n, break it into the sum of at least two positive integers and max ...

  8. [Leetcode] word break ii拆分词语

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

  9. 【LeetCode】343. Integer Break 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学解法 动态规划 日期 题目地址:https:// ...

随机推荐

  1. java多线程--同步屏障CyclicBarrier的使用

    CyclicBarrier的概念理解: CyclicBarrier的字面上的意思是可循环的屏障,是java并发包java.util.concurrent 里的一个同步工具类,在我下载的JDK1.6的中 ...

  2. (原)用pixi.js 实现 方块阵点击后原地自转效果

    源码 各位,请教一个问题,我这个还有BUG,我是想实现,点击一下可以 停止转动,然后再点一下重新转动.而不是一直加速,有没有什么好办法?  PS:问题已经解决,谢谢评论的大神@Antineutrino ...

  3. [入门级] visual studio 2010 mvc4开发,用ibatis作为数据库访问媒介(一)

    [入门级] visual studio 2010 mvc4开发,用ibatis作为数据库访问媒介(一) Date  周二 06 一月 2015 By 钟谢伟 Tags mvc4 / asp.net 示 ...

  4. 分享一实战性开源MVC框架<Linux、Windows跨平台开发so easy>

    一.引子   开源地址 https://github.com/564064202/Moon.Mvc 欢迎加入开发 .NET Core微软还在发力,但作为商用还有一段距离,很多开发库尚不能用于.NET ...

  5. iOS 相机

    本章节主要为之前项目 JXHomepwner 添加照片功能(项目地址).具体任务就是显示一个 UIImagePickerController 对象,使用户能够为 JXItem 对象拍照并保存.拍摄的照 ...

  6. Linux系统修改PATH环境变量方法

    在Linux安装一些软件通常要添加路径环境变量PATH.PATH环境变量通俗的讲就是把程序的路径"备案"到系统中,这样执行这些程序时就不需要输入完整路径,直接在bash输入程序名就 ...

  7. α-β剪枝算法的java语言实现(非常实用)

    利用α-β剪枝算法,对下图所示的博弈树进行搜索,搜索得到根节点选择的走步,以及没有必要进行评估的节点,并求出给出在何处发生了剪枝,以及剪枝的类型(属于α剪枝还是β剪枝). 注:□表示MIN节点:○表示 ...

  8. CentOS6.8 修改主机名(1)

    1.临时修改主机名   显示主机名:spark@master:~$ hostnamemaster修改主机名:spark@master:~$ sudo hostname hadoopspark@mast ...

  9. 【问题】Asp.net MVC 的cshtml页面中调用JS方法传递字符串变量参数

    [问题]Asp.net MVC 的cshtml页面中调用JS方法传递字符串变量参数. [解决]直接对变量加引号,如: <button onclick="deleteProduct('@ ...

  10. 《Web开发中让盒子居中的几种方法》

    一.记录下几种盒子居中的方法: 1.0.margin固定宽高居中: 2.0.负margin居中: 3.0.绝对定位居中: 4.0.table-cell居中: 5.0.flex居中: 6.0.trans ...