hdu 5317 合数分解+预处理
RGCDQ
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2818 Accepted Submission(s): 1108
In the next T lines, each line contains L, R which is mentioned above.
All input items are integers.
1<= T <= 1000000
2<=L < R<=1000000
See the sample for more details.
2 3
3 5
1
/*
hdu 5317 合数分解+预处理 problem:
查找区间[l,r]中 gcd(F[a[i]],F[a[j]])的最大值. F[x]为x的分解出的质因子种类数 solve:
可以先计算一下,1e6时质因子最多有7个. 所以可以dp[maxn][7]先预处理出质因子个数的前缀和.
然后查找 1~7谁出现了2次及以上 hhh-2016-08-21 10:38:45
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson ch[0]
#define rson ch[1]
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 1000000;
const int INF = 1e9+10; int prime[maxn+1]; void getPrime()
{
memset(prime,0,sizeof(prime));
for(int i = 2;i <= maxn;i++)
{
if(!prime[i]) prime[++prime[0]] = i;
for(int j = 1;j <= prime[0] && prime[j] <= maxn/i;j++)
{
prime[prime[j]*i] = 1;
if(i % prime[j] == 0) break;
}
}
} int getFactor(int x)
{
int t = x;
int fant = 0;
for(int i = 1;prime[i] <= t/prime[i];i++)
{
if(t % prime[i] == 0)
{
fant ++;
while(t % prime[i] == 0)
t /= prime[i];
}
}
if(t != 1)
fant ++;
return fant;
} int dp[maxn+1][7]; int main()
{
getPrime();
for(int i = 0;i <= 7;i++)
dp[0][i] = 0;
for(int i = 1;i <= maxn;i++)
{
int t = getFactor(i);
for(int j = 0;j < 7;j++)
{
if(t == j+1)
dp[i][j] = dp[i-1][j] + 1;
else
dp[i][j] = dp[i-1][j];
}
}
int T;
int a,b;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
int tMax = 0;
for(int i = 6;i >= 0;i--)
{
if(dp[b][i] - dp[a-1][i] > 1)
{
tMax =i;
break;
}
}
printf("%d\n",tMax+1);
}
}
hdu 5317 合数分解+预处理的更多相关文章
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 4610 Cards (合数分解,枚举)
Cards Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- HDU 4497 GCD and LCM (合数分解)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 5317 RGCDQ(前缀和)
题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...
- hdu_4497GCD and LCM(合数分解)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 GCD and LCM Time Limit: 2000/1000 MS (Java/Other ...
- Perfect Pth Powers pku-1730(筛+合数分解)
题意:x可以表示为bp, 求这个p的最大值,比如 25=52, 64=26, 然后输入x 输出 p 就是一个质因子分解.算法.(表示数据上卡了2个小时.) 合数质因子分解模板. ]; ]; ; ;n ...
- pku1365 Prime Land (数论,合数分解模板)
题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...
- Gym101889J. Jumping frog(合数分解+环形dp预处理)
比赛链接:传送门 题目大意: 一只青蛙在长度为N的字符串上跳跃,“R”可以跳上去,“P”不可以跳上去. 字符串是环形的,N-1和0相连. 青蛙的跳跃距离K的取值范围是[1, N-1],选定K之后不可改 ...
- hdu 4568 Hunter(spfa预处理 + 状压dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4568 思路:首先spfa预处理出每对宝藏之间的最短距离以及宝藏到边界的最短距离,然后dp[state] ...
随机推荐
- 玩转Leveldb原理及源码--拙见1
可以说是不知天高地厚.. 可以说是班门弄斧.. 但是,我今天还就这样走了,我喜欢!!!!!! 注:后续文章,限于篇幅,不懂名词都有 紫色+下划线 超链接,有兴趣,可以查阅: 网上关于Leveldb 的 ...
- eclipse下maven一些配置方法汇总
随着eclipse的不同版本的变更:对maven插件的安装也有着不同的差异:之前也在一些版本的eclipse上安装成功地,但是最近又遇到了一些麻烦,故将这些方法记录下来: 大家都知道的最常用的一种方式 ...
- python之路--day11---迭代器和生成器
迭代: 迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 为什么要有迭代器: 数据类型的取值,字符串,列表,元组依靠索引可以取值,但是字典,集合,文件这些数据类型无法 ...
- CentOS 7 GUI图形界面安装
在此之前先获取root权限,进行以下命令: 1. 在命令行下输入下面的命令来安装Gnome包: yum groupinstall "GNOME Desktop" "Gra ...
- Spring Boot整合Spring Security
Spring Boot对于该家族的框架支持良好,但是当中本人作为小白配置还是有一点点的小问题,这里分享一下.这个项目是使用之前发布的Spring Boot会员管理系统重新改装,将之前filter登录验 ...
- HTTP请求到爬虫代码的终南捷径
前阵子在做爬虫的时候学会了各种抓包,看到http请求的时候硬拼代码实在有点累. 后来发现Postman工具是直接可以把Postman请求直接生成对应的代码,这样一下来就美滋滋了. 那么最后的问题就成了 ...
- HTTP头HOST
http request header 中的host行的作用 在早期的Http 1.0版中,Http 的request请求头中是不带host行的,在Http 1.0的加强版和Http 1.1中加入了h ...
- C# bootstrap之表格动态绑定值
这段时间研究了下bootstrap,打算从表格开始学习,实现动态绑定值,在网上找了挺多例子,但是很少有写全的,要不就太复杂,实现效果后总结一下,直接拷贝过去可以用. 第一步:先去官网上下载bootst ...
- Android开发——发布第三方库到JitPack上
前言: 看到大神们的写的第三方控件,比较好用,我们使用的时候直接是在gradle上加上代码就可以使用了,现在到我们写了一个第三方控件,想要别人使用的时候也是直接在gradle加上相关的代码就可以用了, ...
- 赛码网算法: 军训队列( python实现 )
军训队列 题目描述某大学开学进行军训队列训练,将学生从一开始按顺序依次编号,并排成一行横队,训练的规则如下:从头开始一至二报数,凡报到二的出列剩下的依次向前靠拢,再从头开始进行一至三报数,凡报到三的出 ...