●POJ 2079 Triangle
题链:
http://poj.org/problem?id=2079
题解:
计算几何,凸包,旋转卡壳
复杂度O(N^2),(O(N)什么的就不说了,我觉得我看过的O(N)方法正确性都有问题,虽然有些AC了,那应该是鲁棒性太强了,谁叫他们非要每挪动一步都取MAX的呢)
做法:
(三角形的三个顶点在凸包的顶点上,同时显然三角形的底边不一定为凸包的边啦!)
枚举i,j两点,使得有向线段$\vec{ij}$作为三角形底边。
然后在有向线段$\vec{ij}$的右侧区域(凸包上),寻找k点使得三角形ijk面积最大,用叉积判断是第k个点优还是第k+1个点优。
注意到单调性,k可以用旋转卡壳的思想枚举得到。
附一个简单的证明:三角形的顶点一定在凸包顶点上:
假设现在取得一个三角形P1P2P3,且P1在凸包内。
做过P1的直线l垂直于线段P2P3所在的直线。
显然,把P1点沿着垂线l,向远离线段P2P3的方向移动会使得三角形面积增大。
最后会移动到凸包的顶点上或者凸包的一条边上。
若移到了顶点上,那就表明三角形的定点在凸包的顶点上最优。
若在移到了凸包的一条边上,那也可以通过在边上移动直到达到一个顶点,这样也会使面积变大。
综上,三角形的三个顶点一定在凸包的定点上。
代码:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 50050
using namespace std;
const double eps=1e-8;
int sign(double x){
if(fabs(x)<=eps) return 0;
return x<0?-1:1;
}
struct Point{
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){}
void Read(){scanf("%lf%lf",&x,&y);}
};
typedef Point Vector;
bool operator < (Point A,Point B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);}
bool operator == (Point A,Point B){return sign(A.x-B.x)==0&&sign(A.y-B.y)==0;}
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);}
double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;}
double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;}
Point D[MAXN],C[MAXN];
int Andrew(int dnt){
int cnt=0,k;
sort(D+1,D+dnt+1);
dnt=unique(D+1,D+dnt+1)-D-1;
for(int i=1;i<=dnt;i++){
while(cnt>1&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--;
C[++cnt]=D[i];
} k=cnt;
for(int i=dnt-1;i>=1;i--){
while(cnt>k&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--;
C[++cnt]=D[i];
} if(dnt>1) cnt--;
return cnt;
}
double DA(Point P,Point P1,Point P2){//Directd_Area
return fabs((P1-P)^(P2-P));
}
double RC(int cnt){//Rotating_Calipers
double S=0;
if(cnt==1||cnt==2) return 0;
C[cnt+1]=C[1];
for(int i=1;i<=cnt;i++){
int k=i+1;
for(int cj=2,j;j=(i+cj-1)%cnt+1,cj<cnt;cj++){
while(sign(DA(C[i],C[j],C[k])-DA(C[i],C[j],C[k+1]))<=0)
k=k%cnt+1;
S=max(S,DA(C[i],C[j],C[k]));
}
}
return S/2;
}
int main(){
int n;
while(~scanf("%d",&n)&&n!=-1){
for(int i=1;i<=n;i++) D[i].Read();
printf("%.2lf\n",RC(Andrew(n)));
}
return 0;
}
●POJ 2079 Triangle的更多相关文章
- POJ 2079 Triangle (凸包+旋转卡壳)
[题目链接] http://poj.org/problem?id=2079 [题目大意] 给出一些点,求出能组成的最大面积的三角形 [题解] 最大三角形一定位于凸包上,因此我们先求凸包,再在凸包上计算 ...
- poj 2079 Triangle(旋转卡壳)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 8917 Accepted: 2650 Descript ...
- POJ 2079 Triangle [旋转卡壳]
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 9525 Accepted: 2845 Descript ...
- POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 7625 Accepted: 2234 Descript ...
- poj 2079 Triangle (二维凸包旋转卡壳)
Triangle Time Limit: 3000MS Memory Limit: 30000KB 64bit IO Format: %I64d & %I64u Submit Stat ...
- poj 2079 Triangle
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 9835 Accepted: 2951 Descript ...
- poj 2079 Triangle,旋转卡壳求点集的最大三角形
给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...
- POJ 2079 Triangle 旋转卡壳求最大三角形
求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...
- hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)
链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
随机推荐
- bzoj千题计划276:bzoj4515: [Sdoi2016]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=4515 把lca带进式子,得到新的式子 然后就是 维护树上一次函数取min 一个调了一下午的错误: 当 ...
- Apache自带 ab压测工具 Windows配置使用说明 - 随笔记录
我们先来了解一下ab工具的概念,摘自网络: ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比如ngin ...
- Nginx配置小结
前两天区听了一堂Nginx的课,然后翻了一下自己之前的Nginx的笔记,做了一个简单的小结. 全局变量 $args : 这个变量等于请求行中的参数,同$query_string $content_le ...
- Mego(08) - 高级建模
对于模型建立Mego还提供了一些高级主题 数据库函数映射 我们可以将现有的CLR方法映射到指定数据库的标题函数上,如下所示 public class OrderManageEntities : DbC ...
- HTTP请求到爬虫代码的终南捷径
前阵子在做爬虫的时候学会了各种抓包,看到http请求的时候硬拼代码实在有点累. 后来发现Postman工具是直接可以把Postman请求直接生成对应的代码,这样一下来就美滋滋了. 那么最后的问题就成了 ...
- JavaScript 基础学习1-day14
JavaScript 基础学习1 知识预览JavaScript概述二 JavaScript的基础三 JavaScript的对象BOM对象DOM对象实例练习js扩展 JavaScript概述 JavaS ...
- SpringBoot的配置文件加载顺序和使用方式
1.bootstrap.properties bootstrap.properties 配置文件是由"根"上下文优先加载,程序启动之初就感知 如:Spring Cloud Conf ...
- C#程序编写规范
代码书写规则 1.尽量使用接口,然后使用类实现接口,提高程序的灵活性. 2.一行不要超过80个字符. 3.尽量不要手工更改计算机生成的代码,若必须要改,一定要改为和计算机生成的代码风格一样. 4.关键 ...
- 转:NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)
NLP+句法结构(三)︱中文句法结构(CIPS2016.依存句法.文法)转自:https://www.cnblogs.com/maohai/p/6453389.html 摘录自:CIPS2016 中文 ...
- Python之编码
一.Python2与Python3的区别 1.从宏观上考虑,Python2重复代码太多,错误率高,不够规范.Python崇尚的是语言简洁.优美.清晰.Python3更加规范,重复代码少: 2.Pyth ...