Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +

… + (an-bn)^2 )

列出距离式子(设球心坐标x,球上2个点p,q):

$\sum_{i}^{n}(p_i-x_i)^2=r^2$

$\sum_{i}^{n}(q_i-x_i)^2=r^2$

两式相减,就可以得到一个一次线性方程

构造出n个方程,高斯消元

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
double a[][],p[][];
int n;
void guass()
{int i,j,k,now;
for (i=;i<=n;i++)
{
now=i;
for (j=i+;j<=n;j++)
if (fabs(a[now][i])<fabs(a[j][i]))
now=j;
for (j=i;j<=n+;j++)
swap(a[i][j],a[now][j]);
for (j=i+;j<=n+;j++)
a[i][j]/=a[i][i];
a[i][i]=;
for (j=i+;j<=n;j++)
{
for (k=i+;k<=n+;k++)
{
a[j][k]-=a[j][i]*a[i][k];
}
a[j][i]=;
}
}
for (i=n;i>=;i--)
{
for (j=i+;j<=n;j++)
{
a[i][n+]-=a[i][j]*a[j][n+];
a[i][j]=;
}
a[i][n+]/=a[i][i];
a[i][i]=;
}
}
int main()
{int i,j;
cin>>n;
for (i=;i<=n+;i++)
{
for (j=;j<=n;j++)
scanf("%lf",&p[i][j]);
}
for (i=;i<=n+;i++)
{
for (j=;j<=n;j++)
{
a[i-][j]=p[i][j]-p[i-][j];
a[i-][n+]+=p[i][j]*p[i][j]-p[i-][j]*p[i-][j];
}
a[i-][n+]/=2.0;
}
guass();
printf("%.3lf",a[][n+]);
for (i=;i<=n;i++)
printf(" %.3lf",a[i][n+]);
}

[JSOI2008]球形空间产生器的更多相关文章

  1. 【bzoj1013】[JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4530  Solved: 2364[Subm ...

  2. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  3. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  4. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  5. 线性代数(高斯消元):JSOI2008 球形空间产生器sphere

    JSOI2008 球形空间产生器sphere [题目描述] 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确 ...

  6. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  7. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  8. [JSOI2008]球形空间产生器 (高斯消元)

    [JSOI2008]球形空间产生器 \(solution:\) 非常明显的一道高斯消元.给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们 可以利用这一个性质.我们用n+1个球 ...

  9. bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere

    http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...

  10. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

随机推荐

  1. C语言博客作业—指针

    一.PTA实验作业 题目1: 求出数组中最大数和次最大数 1. 本题PTA提交列表 2. 设计思路 定义max表示范围数组中的最大数(初值设为a[0]),z表示找到的元素在数组中的位置: 定义指针*b ...

  2. 201621123031 《Java程序设计》第7周学习总结

    作业07-Java GUI编程 1.本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 事件监听器: Java事件监听器是由事件类和监听接口组成,自定义 ...

  3. io多路复用(三)

    #!/usr/bin/env python # -*- coding:utf-8 -*- import socket sk1 = socket.socket() sk1.bind(('127.0.0. ...

  4. 《招一个靠谱的移动开发》iOS面试题及详解(上篇)

    以下问题主要用于技术的总结与回顾 主要问题总结 单例的写法.在单利中创建数组应该注意些什么. NSString 的时候用copy和strong的区别. 多线程.特别是NSOperation 和 GCD ...

  5. Web前端性能分析

    Web前端性能通常上代表着一个完全意义上的用户响应时间,包含从开始解析HTML文件到最后渲染完成开始的整个过程,但不包括在输入url之后与服务器的交互阶段.下面是整个过程的各个步骤: 开始解析html ...

  6. 浏览器端类EXCEL表格插件 版本更新 - 智表ZCELL产品V1.1.0.1版本发布

    智表(ZCELL),浏览器下纯JS表格控件,为您提供EXCEL般的智能体验! 纯国产化.高性价比的可靠解决方案. 更新说明     让大家久等了.因为最近忙其他项目,发布时间稍有延迟.  下次版本更新 ...

  7. Java排序算法之快速排序

    Java排序算法之快速排序 快速排序(Quicksort)是对冒泡排序的一种改进. 快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分 ...

  8. C#-获取字符的GBK编码值

    public static int GetGBKValue(string key) { byte[] gbk = Encoding.GetEncoding("GBK").GetBy ...

  9. C# 使用 GDI+ 实现添加中心旋转(任意角度)的文字

    这篇文章是 GDI+ 总结系列的第三篇,如果对 GDI+ 的基础使用不熟悉的朋友可以先看第一篇文章<C# 使用 GDI+ 画图>. 需求 需求是要实现给图片添加任意角度旋转的文字,文字的旋 ...

  10. kubernetes进阶(03)kubernetes的namespace

    服务发现与负载均衡Kubernetes在设计之初就充分考虑了针对容器的服务发现与负载均衡机制,提供了Service资源,并通过kube-proxy配合cloud provider来适应不同的应用场景. ...