POJ 3276 Face The Right Way
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
于是我们可以一直这样处理下去 就可以得到最小答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
bool a[N],f[N];int n;
int work(int k)
{
memset(f,,sizeof(f));
int tmp=,sum=;
for(int i=;i<=n-k+;i++)
{
if((a[i]+sum)%)
{
tmp++;
f[i]=true;
sum+=f[i];
}
if(i-k+>)sum-=f[i-k+];
}
for(int i=n-k+;i<=n;i++)
{
if((a[i]+sum)%)return -;
if(i-k+>)sum-=f[i-k+];
}
return tmp;
}
int main()
{
int ansk=2e8,ansm=2e8;
char s[];
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",s);
if(s[]=='B')a[i]=true;
}
int t;
for(int k=;k<=n;k++)
{
t=work(k);
if(t!=- && t<ansm)ansm=t,ansk=k;
}
printf("%d %d",ansk,ansm);
return ;
}
POJ 3276 Face The Right Way的更多相关文章
- 反转(开关问题) POJ 3276
POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...
- POJ 3276 (开关问题)
题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...
- poj 3276(反转)
传送门:Problem 3276 参考资料: [1]:挑战程序设计竞赛 先献上AC代码,题解晚上再补 题意: John有N头牛,这些牛有的头朝前("F"),有的朝后("B ...
- POJ 3276 Face The Right Way 反转
大致题意:有n头牛,有些牛朝正面,有些牛朝背面.现在你能一次性反转k头牛(区间[i,i+k-1]),求使所有的牛都朝前的最小的反转次数,以及此时最小的k值. 首先,区间反转的顺序对结果没有影响,并且, ...
- Enum:Face The Right Way(POJ 3276)
面朝大海,春暖花开 题目大意:农夫有一群牛,牛排成了一排,现在需要把这些牛都面向正确的方向,农夫买了一个机器,一次可以处理k只牛,现在问你怎么处理这些牛才可以使操作数最小? 这道题很有意思,其实这道题 ...
- POJ 3276
Face The Right Way Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2193 Accepted: 103 ...
- Face The Right Way 一道不错的尺取法和标记法题目。 poj 3276
Face The Right Way Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2899 Accepted: 133 ...
- POJ 3276 Face The Right Way 翻转(开关问题)
题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...
- POJ 3276 Face The Right Way(前缀和优化)
题意:有长度为N的01串,有一个操作可以选择连续K个数字取反,求最小的操作数和最小的K使得最后变成全1串.(N<=5000) 由于K是不定的,无法高斯消元. 考虑枚举K,求出最小的操作数. 显然 ...
随机推荐
- scrapy 模拟登陆
import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...
- Scrum 冲刺 第五日
目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如果完成的任务为调研任务,需 ...
- GPUImage滤镜效果翻译
#import"GPUImageBrightnessFilter.h"//亮度 #import"GPUImageExposureFilter.h"//曝光 #i ...
- OpenGL中怎么把世界坐标系变成屏幕坐标系
对这个3D坐标手动进行OpenGL的四个变换,得到的结果就是屏幕上的像素坐标.前三个变换(Model, View, Projection)都是4x4矩阵,操作对象是四维向量,所以需要把(100, 10 ...
- 微信公众号Markdown编辑器, 适合代码排版
随着大家都转战微信公众平台,如何快速的编写文章就摆在了首要位置.不可否认,使用微信自带的编辑器可以做出好看的排版,甚至用第三方编辑器有更多的模板.但是,这些全部都需要手动的调整.本来公众平台就算是自媒 ...
- php的打印sql语句的方法
echo M()->_sql(); 这样就可以调试当前生成的sql语句: //获取指定天的开始时间和结束时间 $datez="2016-05-12"; $t = strtot ...
- appiun滑动的简单封装
import org.testng.annotations.AfterClass; import org.testng.annotations.BeforeClass; import org.test ...
- 常用的汇编指令 movs stos
movsb 把寄存机esi所存的地址的数据以字节复制到edi movsw 把寄存机esi所存的地址的数据以word复制到edi movsd 把寄存机esi所存的地址的数据以dword复制到e ...
- api-gateway实践(08)新服务网关 - 云端发布和日志查看
一.发布应用 1.新建应用空间 1.1.新建应用空间 1.2.新建应用 1.3.上传程序包 2.创建应用引擎服务 3.发布应用 3.1.为应用容器绑定Web运行环境(应用引擎服务) 3.2.发布应用( ...
- python爬虫requests 下载图片
import requests # 这是一个图片的url url = 'http://yun.itheima.com/Upload/Images/20170614/594106ee6ace5.jpg' ...