题链:

http://acm.hdu.edu.cn/showproblem.php?pid=5608

题解:

莫比乌斯反演,杜教筛

已知$$N^2-3N+2=\sum_{d|N} f(d)$$

多次询问,给出n,求f的前缀和S(n)。


把f函数卷上$I(x)=1$

那么有:

$$\sum_{i=1}^{n}f*l(i)=\sum_{i=1}^{n}l(i)S(\lfloor \frac{n}{i} \rfloor)$$

所以:

$$S(n)=\sum_{i=1}^{n}f*l(i)-\sum_{i=2}^{n}S(\lfloor \frac{n}{i} \rfloor)$$

又因为

$$\begin{aligned}
\sum_{i=1}^{n}f*l(i)&=\sum_{i=1}^{n}\sum_{d|i}f(d)l(\frac{i}{d})\\
&=\sum_{i=1}^{n}\sum_{d|i}f(d)\\
&=\sum_{i=1}^{n}(i^2-3i+2)\\
&=\frac{n(n+1)(2n+1)}{6}-\frac{3n(1+n)}{2}+2n\\
\end{aligned}$$

所以

$$S(n)=\frac{n(n+1)(2n+1)}{6}-\frac{3n(1+n)}{2}+2n-\sum_{i=2}^{n}S(\lfloor \frac{n}{i} \rfloor)$$

到此,就可以直接用杜教筛求解了,不过有点慢。


我们可以先预处理出前$n^{\frac{2}{3}}$个的前缀和

令$F(N)=N^2-3N+2$,那么F就是f的约数和函数

(因为$F(N)=\sum_{d|N}f(d)$)

所以由莫比乌斯反演可知:

$$f(N)=\sum_{d|N}\mu(d)F(\frac{N}{d})$$

然后可以用$O(nlogn)$的复杂度先处理出一些前缀和,

然后再杜教筛即可。

代码:

#include<bits/stdc++.h>
#define DJM 1000000
using namespace std;
const int mod=1000000007;
struct Hash_Table{
#define Hmod 1425367
int org[DJM+50],val[DJM+50],nxt[DJM+50],head[Hmod],hnt;
Hash_Table(){hnt=1;}
void Push(int x,int v){
static int u; u=x%Hmod;
org[hnt]=x; val[hnt]=v; nxt[hnt]=head[u]; head[u]=hnt++;
}
int Find(int x){
static int u; u=x%Hmod;
for(int i=head[u];i;i=nxt[i])
if(org[i]==x) return val[i];
return -1;
}
}H;
int mu[DJM+50],F[DJM+50],f[DJM+50];
void Sieve(){
static bool np[DJM+50];
static int prime[DJM+50],pnt;
mu[1]=1;
for(int i=2;i<=DJM;i++){
F[i]=(1ll*i*i-3*i+2+mod)%mod;
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=DJM/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
for(int d=1;d<=DJM;d++)
for(int i=1;i*d<=DJM;i++)
f[i*d]=(1ll*f[i*d]+1ll*mu[d]*F[i]%mod+mod)%mod;
for(int i=1;i<=DJM;i++) f[i]=(1ll*f[i]+f[i-1])%mod;
}
int DJ_pf(int n){
static int inv6=166666668;
if(n<=DJM) return f[n];
if(H.Find(n)!=-1) return H.Find(n);
int ret=(1ll*n*(n+1)%mod*(2*n+1)%mod*inv6%mod-3ll*(1+n)*n/2%mod+2ll*n%mod+mod)%mod;
for(int i=2,last;i<=n;i=last+1){
last=n/(n/i);
ret=(1ll*ret-1ll*(last-i+1)*DJ_pf(n/i)%mod+mod)%mod;
}
H.Push(n,ret);
return ret;
}
int main(){
Sieve(); int Case,n;
for(scanf("%d",&Case);Case;Case--){
scanf("%d",&n);
printf("%d\n",DJ_pf(n));
}
return 0;
}

  

●HDU 5608 function的更多相关文章

  1. HDU 5608 function [杜教筛]

    HDU 5608 function 题意:数论函数满足\(N^2-3N+2=\sum_{d|N} f(d)\),求前缀和 裸题-连卷上\(1\)都告诉你了 预处理\(S(n)\)的话反演一下用枚举倍数 ...

  2. HDU 5608 - function

    HDU 5608 - function 套路题 图片来自: https://blog.csdn.net/V5ZSQ/article/details/52116285 杜教筛思想,根号递归下去. 先搞出 ...

  3. [HDU 5608]Function(莫比乌斯反演 + 杜教筛)

    题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣N​f(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1N​f ...

  4. HDU 5608 function(莫比乌斯反演 + 杜教筛)题解

    题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...

  5. HDU 6038 - Function | 2017 Multi-University Training Contest 1

    /* HDU 6038 - Function [ 置换,构图 ] 题意: 给出两组排列 a[], b[] 问 满足 f(i) = b[f(a[i])] 的 f 的数目 分析: 假设 a[] = {2, ...

  6. 洛谷P1464 Function  HDU P1579 Function Run Fun

    洛谷P1464 Function HDU P1579 Function Run Fun 题目描述 对于一个递归函数w(a,b,c) 如果a≤0 or b≤0 or c≤0就返回值11. 如果a> ...

  7. HDU 5875 Function 【倍增】 (2016 ACM/ICPC Asia Regional Dalian Online)

    Function Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  8. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  9. HDU 5875 Function 优先队列+离线

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5875 Function Time Limit: 7000/3500 MS (Java/Others) ...

随机推荐

  1. Linux下ftp和ssh详解

    学习了几天Linux下ftp和ssh的搭建和使用,故记录一下.学习ftp和ssh的主要目的是为了连接远程主机,并且进行文件传输.废话不多说,直接开讲! ftp服务器 1. 环境搭建 本人的系统是Arc ...

  2. fs检测文件夹状态

    var http = require("http"); var fs = require("fs"); var server = http.createServ ...

  3. MySQL 服务安装及命令使用

    MySQL 服务安装及命令使用 课程来源说明 本节实验后续至第17节实验为本课程的进阶篇,都基于 MySQL 官方参考手册制作,并根据实验楼环境进行测试调整改编.在此感谢 MySQL 的开发者,官方文 ...

  4. 项目Beta冲刺Day5

    项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...

  5. 常用的 html 标签及注意事项

    <a> 标签 用法:用于定义超链接 清除浏览器默认样式: a { text-decoration: none;/* 去除下划线 */ color: #333;/* 改变链接颜色 */ } ...

  6. HTML标签小记文本类标签

    文本类标签: <input type="text" name="" value="">文本框  type(方式,方法)name文 ...

  7. 前端之bootstrap模态框

    简介:模态框(Modal)是覆盖在父窗体上的子窗体.通常,目的是显示来自一个单独的源的内容,可以在不离开父窗体的情况下有一些互动.子窗体可提供信息.交互等. Modal简介 Modal实现弹出表单 M ...

  8. HTML事件处理程序

    事件处理程序中的代码执行时,有权访问全局作用域中任何代码. //为按钮btn_event添加了两个个事件处理程序,而且该事件会在冒泡阶段触发(最后一个参数是false). var btn_event ...

  9. 构建自己的 PHP 框架

    这是一个系列的文章,项目地址在这里,欢迎大家star. 这个框架前一部分比较像Yii,后一部分比较像Laravel,因为当时正在看相应框架的源码,所以会有不少借鉴参考.捂脸- 这个框架千万不要直接应用 ...

  10. 使用JavaScript实现一个俄罗斯方块

    清明假期期间,闲的无聊,就做了一个小游戏玩玩,目前游戏逻辑上暂未发现bug,只不过样子稍微丑了一些-.-项目地址:https://github.com/Jiasm/tetris在线Demo:http: ...