Loj #3093. 「BJOI2019」光线

题目描述

当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收。

设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去。

现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢?

输入格式

第一行一个正整数 \(n\),表示玻璃层数。

接下来 \(n\) 行,每行两个非负整数 \(a_i,b_i\),表示第 \(i\) 层玻璃的透光率和反射率。

输出格式

输出一行一个整数,表示穿透所有玻璃的光对 \(10^9 + 7\) 取模的结果。

可以证明,答案一定为有理数。设答案为 \(a/b\)(\(a\) 和 \(b\) 是互质的正整数),你输出的答案为 \(x\),你需要保证 \(a\equiv bx \pmod {10^9 + 7}\)。

数据范围与提示

对于 \(5\%\) 的数据,保证 \(n=1\)。

对于 \(20\%\) 的数据,保证 \(n\le 2\)。

对于 \(30\%\)的数据,保证 \(n\le 3\)。

对于 \(50\%\) 的数据,保证 \(n\le 100\)。

对于 \(70\%\) 的数据,保证 \(n\le 3000\)。

对于 \(100\%\) 的数据:

- \(1\le n\le 5\times 10^5\)

- \(1\le a_i \le 100\)

- \(0\le b_i \le 99\)

- \(1\le a_i+b_i \le 100\)

- 每组 \(a_i\) 和 \(b_i\) 在满足上述限制的整数中随机生成。

\(\\\)

设\(f_i\)表示一单位光从上至下打到第\(i\)块玻璃之后能穿过第\(n\)块玻璃的单位数量。

\(g_i\)表示一单位光从下至上打到第\(i\)块玻璃之后能穿过第\(n\)块玻璃的单位数量。

特别地\(g_0=0,f_{n+1}=1\)。

于是我们容易得到:

\[f_i=a_i\%f_{i+1}+b_i\%g_{i-1}\ (1\leq i\leq n)\\
\Rightarrow f_{i+1}=\frac{f_i-b_i\%g_{i-1}}{a_i\%}\\
\]

这里不需要考虑\(a_i=0\)的问题,因为\(a_i=0\)时答案为\(0\),特判掉就好了。

以及:

\[g_i=a_i\% *g_{i-1}+b_i\% *f_{i+1}\ (1\leq i\leq n)\\
\]

我们可以设\(f_1=x\),然后按照上面两个\(DP\)出\(f_{n+1}\)用\(x\)表示时的系数。答案就是\(\frac{1}{f_{n+1}}\)。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 500005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=1e9+7;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
} int n;
ll a[N],b[N];
const ll inv100=ksm(100,mod-2);
ll f[N],g[N]; int main() {
n=Get();
for(int i=1;i<=n;i++) {
a[i]=inv100*Get()%mod,b[i]=inv100*Get()%mod;
}
for(int i=1;i<=n;i++) {
if(a[i]==0) {cout<<0;return 0;}
}
f[1]=1;
f[2]=ksm(a[1],mod-2);
g[1]=b[1]*f[2]%mod;
for(int i=2;i<=n;i++) {
f[i+1]=(f[i]-b[i]*g[i-1]%mod+mod)*ksm(a[i],mod-2)%mod;
g[i]=(a[i]*g[i-1]+b[i]*f[i+1])%mod;
}
cout<<ksm(f[n+1],mod-2);
return 0;
}

Loj #3093. 「BJOI2019」光线的更多相关文章

  1. LOJ 3093 「BJOI2019」光线——数学+思路

    题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...

  2. LOJ#3093. 「BJOI2019」光线(递推+概率期望)

    题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从 ...

  3. 【LOJ】#3093. 「BJOI2019」光线

    LOJ#3093. 「BJOI2019」光线 从下到上把两面镜子合成一个 新的镜子是\((\frac{a_{i}a_{i + 1}}{1 - b_{i}b_{i + 1}},b_{i} + \frac ...

  4. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  5. LOJ 3093: 洛谷 P5323: 「BJOI2019」光线

    题目传送门:LOJ #3093. 题意简述: 有 \(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\). 问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的 ...

  6. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  7. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  8. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

  9. LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域

    题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...

随机推荐

  1. c/c++ 动态库与静态库的制作和使用

    静态库的用法 静态库的文件名 libxxx.a -->对应windows的.lib文件 做静态库的命令: ar rcs libxxx.a file1.o file2.o file.o 使用静态库 ...

  2. 第八周LINUX学习笔记

    vsftpd丶NFS丶SAMBA nfs基于rpcsamba基于cifs(smb)  DRBD: ftp:File Transfer protocol 文件传输协议 两个连接:       tcp:命 ...

  3. Android 音视频开发学习思路

    Android 音视频开发这块目前的确没有比较系统的教程或者书籍,网上的博客文章也都是比较零散的.只能通过一点点的学习和积累把这块的知识串联积累起来. 初级入门篇: Android 音视频开发(一) ...

  4. CSS Modules In Webpack

    1)从形式上看,CSS Modules 是将CSS中的选择器转换为变量,然后在DOM中引用变量来引入样式. 2)从效果上看,CSS Modules 可以将CSS选择器名字转成随机字符串,保证选择器同名 ...

  5. centos6.7 配置Elasticsearch

    Elasticsearch(以下简称ES),是一款开源的全文搜索引擎,获得了广泛的应用.这篇博客将介绍在centos6.7上如何配置ES. 一.安装JAVA环境 centos默认安装了JAVA环境,首 ...

  6. Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of type 'com.thinkplatform.dao.UserLogDao' available: expected at least 1 bean which qualifies as autowi

    我出错的问题是: 检查:

  7. java安装和配置(3.18)

    大家好,我是一名笨笨的程序小白,刚刚学习完C#的基本开发,现在要开始学习java了!我希望在博客园里记录下我的学习日记,我也不敢保证自己会讲的东西多么全面,但是都是比较基础的东西,如果对你也有点点的小 ...

  8. 数据库连接(1)-从JDBC到MyBatis

    摘要 因为有持久层框架,和Spring的存在,越来越多的人对数据库连接这块不甚了解,只知使用方便,不知其原理.所以写一个数据库连接的系列文章,总结下本人在数据库连接方面遇到的问题,和对数据库连接的理解 ...

  9. cassandra 堆外内存管理

    为什么需要堆外内存呢 单有一些大内存对象的时候,JVM进行垃圾回收时需要收集所有的这些对象的内存也.增加了GC压力.因此需要使用堆外内存. java 分配堆外内存 org.apache.cassand ...

  10. 【Caffe篇】--Caffe solver层从初始到应用

    一.前述 solve主要是定义求解过程,超参数的 二.具体 #往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解. #caffe提供了六种优化算法来求解最优参数,在solv ...