Flink应用案例:How Trackunit leverages Flink to process real-time data from industrial IoT devices

Recently there has been significant discussion about edge computing as a major technology trend in 2019. Edge computing brings computing capabilities away from the cloud, and rather close to the field, especially in the Industrial IoT sector (IIoT). In this blog post we describe how Trackunit leverages Apache Flink as the stream processing framework of choice to build data pipelines for fleet management operations in the construction industry.
Trackunit has specialized in the design, development and production of fleet management systems. The company is a world leader in telematics solutions for the construction industry and provides IoT services for a broad portfolio of companies and sectors to optimize the daily operations of its customers. In the following paragraphs, we describe how Trackunit’s data architecture evolved over time to include new features for the company’s data pipeline.
The company’s journey with Flink started in 2016 as part of a new strategy to build its technology powered by distributed, open source data processing technologies for increased scalability and efficient production deployment. The infrastructure was built on AWS, initially using Amazon Kinesis as the messaging queue and Amazon EMR for cluster management, alongside Flink1.2 (which was quickly upgraded to Flink1.3). The following diagram gives an overview of the initial pipeline:

As shown above, in this phase of the architecture the IoT devices send data through telematics to a Kinesis topic that is then passing them on to a single Flink Job for parsing and storage. During this stage, the architecture included an external parsing service that was additionally accessing data from a database asynchronously. The results were then passed back to the single Flink job and then stored in Cassandra.
However, due to location data being important for industrial IoT applications like Trackunit’s, the second iteration of the pipeline includes additional data enrichment. This is achieved using Flink’s Async I/O function that calls two separate external services: one for parsing and a second for enriching the data that is then transferred back to the pipeline as shown in the diagram below.

The third evolution of the pipeline includes separating this single job to multiple ones, each specialized in a specific pipeline task. As illustrated below, this iteration includes a Flink job responsible for parsing the data which is then moved to a Kinesis topic, followed by a second Flink job responsible for data enrichment and a third one storing the enriched data to Cassandra.

By separating the single Flink job to different ones, the team was able to reuse and add functionality to the same pipeline. Additionally, with each Flink job focusing on a single operation, it became easier to debug and fix issues. Finally, Trackunit’s team can re-use different parts of the infrastructure in different applications as required by the business. This proves to be a scalable solution that allows development work to be repeated and shared across use cases. However, with this setup, the team experienced a slowdown in Flink’s throughput that was caused by the external parsing service. As a solution, the team removed the external parsing service and embedded the code to the Flink parsing job for greater efficiency and faster parsing of the data as shown in the diagram below.

To further increase performance and minimize the number of calls to the async enrichment service, the team implemented a cache to enrich the pipeline with location data before writing to a new Kinesis topic pushing the enriched data downstream as illustrated in the diagram below. This addition managed to decrease the Async calls by 33% which was a big achievement for the team.

Trackunit is constantly looking at new upgrades and Flink features that can increase the pipeline's performance even further and make the architecture more scalable and robust. The team is currently using Flink 1.7.1 in testing and production and plans to replace all internal state to Avro to ensure better state migration.
You can find out more about our journey with Apache Flink and some specific DOs and DONTs in my Flink Forward Berlin 2018 talk here.

Lasse Nedergaard is a lead developer and system architect for reactive distributed systems at Trackunit S/A based on Mesos DC/OS, Apache Flink, Apache Akka and Akka streams, Kinesis, Cassandra, and SQL Server 2016 among others.
About Trackunit:
Since 2003, Trackunit has specialized in the design and development of fleet management systems. The company creates both hardware and software solutions within telematics and industrial IoT. Developing
unique solutions to provide suppliers, owners and operators of machines with the most effective telematics solutions. We use case studies and customer feedback to generate valuable insights for developing new products and services.
Trackunit is the leading global supplier of fleet management solutions, operating out of our HQ in Denmark and eight offices worldwide.
About Apache Flink:
Apache Flink is used by developers to analyze and process data streams of very high volume. By adopting Flink and a data streaming architecture, enterprises can get real-time insights from their data in
milliseconds, as well as cover existing historical data processing needs within a single platform.
Flink is developed and supported by a vibrant and growing open source community at the Apache Software Foundation with more than 460 contributors, of which dA engineers are proud participants.
Flink应用案例:How Trackunit leverages Flink to process real-time data from industrial IoT devices的更多相关文章
- Flink 从 0 到 1 学习 —— Flink Data transformation(转换)
toc: true title: Flink 从 0 到 1 学习 -- Flink Data transformation(转换) date: 2018-11-04 tags: Flink 大数据 ...
- Flink 从0到1学习—— Flink 不可以连续 Split(分流)?
前言 今天上午被 Flink 的一个算子困惑了下,具体问题是什么呢? 我有这么个需求:有不同种类型的告警数据流(包含恢复数据),然后我要将这些数据流做一个拆分,拆分后的话,每种告警里面的数据又想将告警 ...
- Flink 从0到1学习 —— Flink 中如何管理配置?
前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一 ...
- Flink 源码解析 —— 深度解析 Flink 是如何管理好内存的?
前言 如今,许多用于分析大型数据集的开源系统都是用 Java 或者是基于 JVM 的编程语言实现的.最着名的例子是 Apache Hadoop,还有较新的框架,如 Apache Spark.Apach ...
- Flink 源码解析 —— 深度解析 Flink 序列化机制
Flink 序列化机制 https://t.zsxq.com/JaQfeMf 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭 ...
- Flink 从 0 到 1 学习 —— Flink 配置文件详解
前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...
- Flink中案例学习--State与CheckPoint理解
1.State概念理解 在Flink中,按照基本类型,对State做了以下两类的划分:Keyed State, Operator State. Keyed State:和Key有关的状态类型,它只能被 ...
- Apache Flink 进阶(六):Flink 作业执行深度解析
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink Contributor.网易云音乐实时计算平台研发工程师岳猛分享.主要分享内容为 Flink Job 执行作业的 ...
- Flink 的Window 操作(基于flink 1.3描述)
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作.本文主要聚焦于在Flink中如何进行窗口操作,以及程序员如何 ...
随机推荐
- dotnet中Stream、string及byte[]的相关操作
string与byte[](UTF-8) //string to byte[] string str = "abc中文"; //0x61 0x62 0x63 0xE4 0xB8 0 ...
- Android框架式编程之RxJava(一):HelloWorld
Hello World 源码: import android.graphics.Bitmap; import android.graphics.BitmapFactory; import androi ...
- 解决flutter的image_cropper组件引入报错问题
在使用flutter的图片裁剪组件image_cropper,github:https://github.com/hnvn/flutter_image_cropper 根据它的要求,安卓需要在文件[A ...
- C语言字符/字符串相关函数收藏
字符串的声明与使用 定义一个可变的字符串: char ch[]={"123456abc"}; char ch2[5]={"123456789"}; //会出现警 ...
- synchronized的四种作用域以及不能被继承解析
synchronized是java中用于同步的关键字,其典型的作用域如下所示. 1 对象锁 @Slf4j public class SynchronizedExample1 { private fin ...
- Kafka面试题
1.如何获取topic主题的列表bin/kafka-topics.sh --list --zookeeper localhost:2181 2.生产者和消费者的命令行是什么?生产者在主题上发布消息:b ...
- ASP.NET Core中使用GraphQL - 第五章 字段, 参数, 变量
ASP.NET Core中使用GraphQL ASP.NET Core中使用GraphQL - 第一章 Hello World ASP.NET Core中使用GraphQL - 第二章 中间件 ASP ...
- 如何大幅提升web前端性能之看tengine在大公司架构实践
在一个项目还是单体架构的时候,所有的js,css,image都会在一个web网站上,看起来并没有什么问题,比如下面这样: 但是当web网站流量起来的时候,这个单体架构必须要进行横向扩展,而在原来的架构 ...
- SLAM+语音机器人DIY系列:(二)ROS入门——6.编写简单的service和client
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- Mac实用技巧之:访达/Finder
更多Mac实用技巧系列文章请访问我的博客:Mac实用技巧系列文章 Finder就相当于windows XP系统的『我的电脑』或win7/win10系统里的『计算机』(打开后叫资源管理器),find是查 ...