一、可迭代对象和迭代器

1.迭代的概念

上一次输出的结果为下一次输入的初始值,重复的过程称为迭代,每次重复即一次迭代,并且每次迭代的结果是下一次迭代的初始值

注:循环不是迭代

while True: #只满足重复,因而不是迭代
print('====>')

2.可迭代的对象

内置__iter__方法的,都是可迭代的对象。

list是可迭代对象,dict是可迭代对象,set也是可迭代对象。

[1,2].__iter__()
'hello'.__iter__()
(1,2).__iter__() {'a':1,'b':2}.__iter__()
{1,2,3}.__iter__()

例如:

x = [1, 2, 3]
y = iter(x)
z = iter(x)
print(next(y))
print(next(y))
print(next(z))
print(type(x))
print(type(y))

输出

1
2
1
<class 'list'>
<class 'list_iterator'>

如下图所示

这里x是一个可迭代对象,yz是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。

迭代器有一种具体的迭代器类型,比如list_iteratorset_iterator。可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。

3.迭代器

  • 1.为什么要有迭代器?

对于没有索引的数据类型,必须提供一种不依赖索引的迭代方式。

  • 2.迭代器定义:

迭代器:可迭代对象执行__iter__方法,得到的结果就是迭代器,迭代器对象有__next__方法

它是一个带状态的对象,他能在你调用next()方法的时候返回容器中的下一个值,任何实现了__iter____next__()方法的对象都是迭代器,__iter__返回迭代器自身,__next__返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常

  • 3.迭代器的实现

例:

i=[1,2,3].__iter__()  

print(i)    #迭代器

print(i.__next__())
print(i.__next__())
print(i.__next__())
#print(i.__next__()) #抛出异常:StopIteration

输出

<list_iterator object at 0x1019c3eb8>
1
2
3

每次调用next()方法的时候做两件事:

  1. 为下一次调用next()方法修改状态
  2. 为当前这次调用生成返回结果

迭代器就像一个懒加载的工厂,等到有人需要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。

  • 4.如何判断迭代器对象和可迭代对象
from collections import Iterable,Iterator
'abc'.__iter__()
().__iter__()
[].__iter__()
{'a':1}.__iter__()
{1,2}.__iter__() f=open('a.txt','w')
f.__iter__()

#判断是否为可迭代对象,以下都是
print(isinstance('abc',Iterable))
print(isinstance([],Iterable))
print(isinstance((),Iterable))
print(isinstance({'a':1},Iterable))
print(isinstance({1,2},Iterable))
print(isinstance(f,Iterable))

#判断是否为迭代器,只有文件是
print(isinstance('abc',Iterator))
print(isinstance([],Iterator))
print(isinstance((),Iterator))
print(isinstance({'a':1},Iterator))
print(isinstance({1,2},Iterator))
print(isinstance(f,Iterator))

输出

True
True
True
True
True
True
False
False
False
False
False
True

可迭代对象:只有__iter__方法,执行该方法得到的迭代器对象

迭代器:有__iter____next__()方法

注:对于迭代器对象来说,执行__iter__方法,得到的结果仍然是它本身

  • 5.迭代器的优点和缺点

优点:
1.提供了一种不依赖下标的迭代方式
2.就跌迭代器本身来说,更节省内存

缺点:
1. 无法获取迭代器对象的长度
2. 不如序列类型取值灵活,是一次性的,只能往后取值,不能往前退

二、生成器

1.定义

生成器(generator)是一个特殊的迭代器,它的实现更简单优雅,yield是生成器实现__next__()方法的关键。它作为生成器执行的暂停恢复点,可以对yield表达式进行赋值,也可以将yield表达式的值返回。

也就是说,yield是一个语法糖,内部实现支持了迭代器协议,同时yield内部是一个状态机,维护着挂起和继续的状态。

yield的功能:
1.相当于为函数封装好__iter__和__next__
2.return只能返回一次值,函数就终止了,而yield能返回多次值,每次返回都会将函数暂停,下一次next会从上一次暂停的位置继续执行

例:

def counter(n):
print('start...')
i=0
while i < n:
yield i
i+=1
print('end...') g=counter(5)
print(g)
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
# print(next(g)) #会报错

输出

start...
0
1
2
3
4

 

2.生成器函数

  • 生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行;

普通函数return返回

def lay_eggs(num):
egg_list=[]
for egg in range(num):
egg_list.append('蛋%s' %egg)
return egg_list yikuangdan=lay_eggs(10) #我们拿到的是蛋
print(yikuangdan)

输出

['蛋0', '蛋1', '蛋2', '蛋3', '蛋4', '蛋5', '蛋6', '蛋7', '蛋8', '蛋9']

迭代器函数

def lay_eggs(num):
for egg in range(num):
res='蛋%s' %egg
yield res #生成器关键语法
print('下完一个蛋') laomuji=lay_eggs(10) #我们拿到的是一只母鸡
print(laomuji)
print(laomuji.__next__()) #迭代 蛋0
print(laomuji.__next__()) #蛋1
print(laomuji.__next__()) #蛋2
egg_l=list(laomuji)
print(egg_l)

输出

蛋0
下完一个蛋
蛋1
下完一个蛋
蛋2
下完一个蛋
下完一个蛋
下完一个蛋
下完一个蛋
下完一个蛋
下完一个蛋
下完一个蛋
下完一个蛋
['蛋3', '蛋4', '蛋5', '蛋6', '蛋7', '蛋8', '蛋9']

3.生成器表达式

  • 生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表;
  • food=yield food_list

    #g.send('food1'),先把food1传给yield,由yield赋值给food,然后返回给food_list,然后再往下执行,直到再次碰到yield,然后把yield后的返回值返回给food_list

注意:开始生成器不能send非空值

def eater(name):        #协程函数
print('%s ready to eat' %name)
food_list=[]
while True:
food=yield food_list #装饰器表达式
food_list.append(food)
print('%s start to eat %s' %(name,food)) g=eater('hexin')
print(g) #生成器
print(g.send('food1'))  #传值

输出

Traceback (most recent call last):
<generator object eater at 0x1049030f8>    #生成器对象
File "/Users/hexin/PycharmProjects/py3/day5/2.py", line 71, in <module>
print(g.send('food1'))
TypeError: can't send non-None value to a just-started generator    #开始生成器不能send非空值
  • 初始化后
def eater(name):        #协程函数
print('%s ready to eat' %name)
food_list=[]
while True:
food=yield food_list #装饰器表达式
food_list.append(food)
print('%s start to eat %s' %(name,food)) g=eater('hexin')
print(g) #生成器
next(g) #等同于 g.send(None),初始化 print(g.send('food1'))

输出

<generator object eater at 0x107cde258>
hexin ready to eat
hexin start to eat food1
['food1']
  • 为了防止忘记初始化,可利用装饰器进行初始化,如下
def deco(func):     #初始化函数
def wrapper(*args,**kwargs):
res=func(*args,**kwargs)
next(res) #等同于 g.send(None),初始化
return res
return wrapper @deco #用初始化函数装饰器,调用初始化函数
def eater(name): #协程函数
print('%s ready to eat' %name)
food_list=[]
while True:
food=yield food_list #装饰器表达式
food_list.append(food)
print('%s start to eat %s' %(name,food)) g=eater('hexin')
# print(g) #生成器
# next(g) #等同于 g.send(None),初始化 print(g.send('food1'))
print(g.send('food2'))
print(g.send('food3'))

输出

hexin ready to eat
hexin start to eat food1
['food1']
hexin start to eat food2
['food1', 'food2']
hexin start to eat food3
['food1', 'food2', 'food3']

【Python3之迭代器,生成器】的更多相关文章

  1. python3之迭代器&生成器

    1.迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式.. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不 ...

  2. 4.10 Python3 进阶 - 迭代器 & 生成器

    >>返回主目录 源码 from typing import Iterable, Iterator # 可迭代对象:字符串.列表.元组.字典.集合.range().enumerate()等 ...

  3. python3.7 迭代器和生成器

    #!/usr/bin/env python __author__ = "lrtao2010" #python3.7 迭代器和生成器 #迭代器协议: ''' 1.迭代器协议是指:对象 ...

  4. python3.5-day5_迭代器_生成器_装饰器_模块

    笔者QQ 360212316 迭代器&生成器 生成器: 一个函数调用返回一个迭代器,那这个函数叫做生成器,如果函数中包含yield语法,那么这个函数就会变成生成器 生成器的特点: 1.生成器必 ...

  5. day04 装饰器 迭代器&生成器 Json & pickle 数据序列化 内置函数

    回顾下上次的内容 转码过程: 先decode  为 Unicode(万国码 ) 然后encode 成需要的格式     3.0 默认是Unicode  不是UTF-8 所以不需要指定  如果非要转为U ...

  6. Python 迭代器&生成器,装饰器,递归,算法基础:二分查找、二维数组转换,正则表达式,作业:计算器开发

    本节大纲 迭代器&生成器 装饰器  基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...

  7. Python(四)装饰器、迭代器&生成器、re正则表达式、字符串格式化

    本章内容: 装饰器 迭代器 & 生成器 re 正则表达式 字符串格式化 装饰器 装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解 ...

  8. Python 迭代器&生成器

    1.内置参数     Built-in Functions     abs() dict() help() min() setattr() all() dir() hex() next() slice ...

  9. python杂记-4(迭代器&生成器)

    #!/usr/bin/env python# -*- coding: utf-8 -*-#1.迭代器&生成器#生成器#正确的方法是使用for循环,因为generator也是可迭代对象:g = ...

  10. Python学习笔记——基础篇【第四周】——迭代器&生成器、装饰器、递归、算法、正则表达式

    目录 1.迭代器&生成器 2.装饰器 a.基本装饰器 b.多参数装饰器 3.递归 4.算法基础:二分查找.二维数组转换 5.正则表达式 6.常用模块学习 #作业:计算器开发 a.实现加减成熟及 ...

随机推荐

  1. 管理 MariaDB 用户账户

    哪些用户可以连接到MariaDB 服务器,他们都可以从哪些地方连接,连接到服务器后又能够做什么等,都是本文将涉及到的内容. 用户的权限信息都保存在 mysql 库中的几个权限表中.对 MariaDB ...

  2. Zabbix实战-简易教程(3)--DB安装和表分区

    一.DB安装环境 主机角色 主机IP VIP 操作系统版本 软件版本 DB Master A 192.168.1.97 (主从) CentOS 6.5 64bit mysql-5.6.21 DB Sl ...

  3. 将控制台信息显示在前台页面的js插件

    在拿出插件之前,先回顾一下apply()的用法,这里和call()做比较. JavaScript中的每一个Function对象都有一个apply()方法和一个call()方法,它们的语法分别为: /* ...

  4. Linux下zeromq.js安装

    本文章主要阐述在离线环境下安装zeromq.js的方法和步骤.zeromq.js下载地址: https://www.npmjs.com/package/zeromq或者 https://github. ...

  5. cs231n spring 2017 lecture2 Image Classification 听课笔记

    1. 相比于传统的人工提取特征(边.角等),深度学习是一种Data-Driven Approach.深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体.而人工提取特征的方式很脆弱,换一个物体 ...

  6. 三维dp&codeforce 369_2_C

    三维dp&codeforce 369_2_C 标签: dp codeforce 369_2_C 题意: 一排树,初始的时候有的有颜色,有的没有颜色,现在给没有颜色的树染色,给出n课树,用m种燃 ...

  7. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

  8. Codeforces__Raising Bacteria

    题目传送门:Raising Bacteria //问题描述:一个盒子里面放一个细菌在一天可以增生两个细菌. 现在已知盒子里面细菌的个数,问你最初放多少个细菌可以增生盒子里面的细菌数量 //输入:盒子中 ...

  9. css3 样式 圆角

    第一次学习css3 现在总结一下,方便以后查看: 1.border-radius:25px; 这个用来增加圆角属性 2.CSS3边框阴影 在 CSS3 中,box-shadow 用于向方框添加阴影: ...

  10. HDU 1213 How Many Tables(模板——并查集)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1213 Problem Description Today is Ignatius' birthday ...