BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法
BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法
Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
111
Sample Output
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int mod,n,m,nxt[25];
char s[25];
struct Mat {
int v[21][21];
Mat(){memset(v,0,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(i=0;i<=m;i++) {
for(j=0;j<=m;j++) {
for(k=0;k<=m;k++) {
(re.v[i][j]+=v[i][k]*x.v[k][j]%mod)%=mod;
}
}
}
return re;
}
};
void print(Mat w) {
int i,j;
for(i=0;i<=m;i++) {
for(j=0;j<=m;j++) {
printf("%d ",w.v[i][j]);
}puts("");
}
}
Mat qp(Mat x,int y) {
Mat I;
int i;
for(i=0;i<=m;i++) I.v[i][i]=1;
while(y) {
if(y&1) I=I*x;
x=x*x;
y>>=1;
}
return I;
}
void getnxt() {
int i=0,j=-1;
nxt[0]=-1;
while(i<m) {
if(j==-1||s[i]==s[j]) nxt[++i]=++j;
else j=nxt[j];
}
}
int main() {
scanf("%d%d%d%s",&n,&m,&mod,s);
int i,j,k;
getnxt();
Mat x,ans;
for(i=0;i<m;i++) {
for(j=0;j<=9;j++) {
k=i;
while(k!=-1&&s[k]-'0'!=j) k=nxt[k];
x.v[i][k+1]++;
}
}
ans.v[0][0]=1;
ans=ans*qp(x,n);
int sum=0;
for(i=0;i<m;i++) sum=(sum+ans.v[0][i])%mod;
printf("%d\n",sum);
}
BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法的更多相关文章
- BZOJ1009: [HNOI2008]GT考试(KMP+矩阵乘法)
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...
- [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法
Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)
---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...
- 洛谷P3193 [HNOI2008]GT考试(dp 矩阵乘法)
题意 题目链接 Sol 设\(f[i][j]\)表示枚举到位置串的第i位,当前与未知串的第j位匹配,那么我们只要保证在转移的时候永远不会匹配即可 预处理出已知串的每个位置加上某个字符后能转移到的位置, ...
- BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...
- 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵
原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...
随机推荐
- sql语言不经常用,复习
sql语言不经常用,每次再用都隔好久的时间,以致最基本的都想不起来了,只好转一篇记着= - 找的时候方便 SQL分类: DDL-数据定义语言(CREATE,ALTER,DROP,DECLARE) ...
- TensorFlow学习记录(一)
windows下的安装: 首先访问https://storage.googleapis.com/tensorflow/ 找到对应操作系统下,对应python版本,对应python位数的whl,下载. ...
- VS 和 VAssistX 常用快捷键
----------------------------------------------------------------函数跳转-------------------------------- ...
- FFMpeg编译之路
为了编译这个东西,快折腾了一个星期了.期间经历了很多痛苦的过程,今天我把整个过程,以及在这个过程的感悟写下来,以备日后查看,也希望能帮到一些像我一样的兄弟姐妹. 在这一个星期里前前后后加起来总共使用了 ...
- Web运营手记
1.图片是给活人用户看的,相对来讲,文字是给搜索引擎看的.精华内容争取要在网站或者频道主页里面让人看到. 2.搜索引擎喜欢看的几种文字:页面标题.关键词元信息(只有Bing管点用).描述(descri ...
- Java经验杂谈(2.对Java多态的理解)
多态是面向对象的重要特性之一,我试着用最简单的方式解释Java多态: 要正确理解多态,我们需要明确如下概念:・定义类型和实际类型・重载和重写・编译和运行 其中实际类型为new关键字后面的类型. 重载发 ...
- Stack和Vector源码分析
Stack和Vector源码分析 Stack和Vector源码分析stack源码分析1.Stack是什么2.Stack的结构图3.Stack继承关系4.Stack的主要方法5.Stack源码Vecto ...
- 四年级--python函数基础用法
一.函数的定义,调用和返回值 1.1 语法 def 函数(参数一,参数二...): ''' 文档注释 ''' 代码逻辑一 代码逻辑二 .... return 返回值 1.2 定义函数的三种形式 说明: ...
- Cython入门Demo(Linux)
众所周知,Python语言是非常简单易用的,但是python程序在运行速度上还是有一些缺陷.于是,Cython就应运而生了,Cython作为Python的C扩展,保留了Python的语法特点,集成C语 ...
- 【热身】github的使用
GitHub 可以托管各种Git版本库,并提供一个web界面,但与其它像 SourceForge或Google Code这样的服务不同,GitHub的独特卖点在于从另外一个项目进行分支的简易性.为一个 ...