一、前述

Em算法是解决数学公式的一个算法,是一种无监督的学习。

EM算法是一种解决存在隐含变量优化问题的有效方法。EM算法是期望极大(Expectation Maximization)算法的简称,EM算法是一种迭代型的算法,在每一次的迭代过程中,主要分为两步:即求期望(Expectation)步骤和最大化(Maximization)步骤。

二、具体

1、高斯混合模型
       所谓混合高斯模型(GMM)就是指对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的数据分别在几个高斯模型上投影,就会分别得到在各个类上的概率。得出一个概率有很多好处,因为它的信息量比简单的一个结果要多,比如,我可以把这个概率转换为一个 score ,表示算法对自己得出的这个结果的把握。简单的说就是:m个样本{x1,...xm},可以分为k类,每个类别都服从高斯分布。

2、EM算法概述

EM算法实际上是一个不停迭代计算的过程,根据我们事先估计的先验概率A,得出一个结果B,再根据结果B,再计算得到结果A,然后反复。
可以想象饭店的后方大厨,炒了两盘一样的菜,现在,菜炒好后从锅中倒入盘,不可能一下子就分配均匀,所以先往两盘中倒入,然后发现B盘菜少了,就从A中匀出一些,A少了,从B匀.......不停迭代。

给定训练样本{x1,...xm}(与k-means中的样本一样是没有标签的,因此EM也是非监督学习方法),认为他们满足高斯分布    , 求估计参数    

【机器学习】--EM算法从初识到应用的更多相关文章

  1. 机器学习-EM算法-pLSA模型笔记

    pLSA模型--基于概率统计的pLSA模型(probabilistic Latent Semantic Analysis,概率隐语义分析),增加了主题模型,形成简单的贝叶斯网络,可以使用EM算法学习模 ...

  2. 机器学习-EM算法笔记

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型 ...

  3. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  4. 机器学习-EM算法

    最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准 ...

  5. 机器学习-EM算法的收敛证明

    上一篇开头说过1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明. EM算法的收敛性只要我们能够证明对数似然函数的值在迭代的过程中是增加的 即可: 证明 ...

  6. 机器学习——EM算法与GMM算法

    目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂 ...

  7. 机器学习-EM算法-GMM模型笔记

    GMM即高斯混合模型,下面根据EM模型从理论公式推导GMM: 随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为φ1,φ2,... ,φK,第i个高斯分布的均值为μi,方差为Σi.若观测到随机 ...

  8. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  9. 简单易学的机器学习算法——EM算法

    简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...

随机推荐

  1. ECMAScript简介以及es6新增语法

    ECMAScript简介 ECMAScript与JavaScript的关系 ECMAScript是JavaScript语言的国际化标准,JavaScript是ECMAScript的实现.(前者是后者的 ...

  2. transform-origin

    transform-origin:改变原点中心位置 transform-origin是变形原点,也就是该元素围绕着那个点变形或旋转,transform-origin并不是transform中的属性值, ...

  3. scala 访问阿里云oss

    我们的数据一天就一个T,数据量不断增大,集群磁盘有限,所以把冷数据放到了oss,偶尔会使用到冷数据,如果使用的时候还的从oss上拉数据这样很浪费时间后来想了个办法可以直接获取到oss上的数据.案例:o ...

  4. testng增加失败重跑机制

    注: 以下内容引自 http://www.yeetrack.com/?p=1015 testng增加失败重跑机制 Posted on 2014 年 10 月 31 日 使用Testng框架搭建自动测试 ...

  5. 【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Solution 这 ...

  6. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  7. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  8. CentOS7解决firefox无法启用ibus中文输入的问题

    最近换电脑,要换掉使用了6年的旧环境,开始折腾重装系统: 下了minimal版本的CentOS7.4,然后开始一点点装想用的东西,多少找到一点十年前折腾LFS的感觉:然后竟然被输入法拌住了半天,事后回 ...

  9. WeTest----如何使用WeTest进行App性能测试?

    使用Wetest可以测试手机app的性能,wetest主打游戏app测试,但是对于其余的app仍然适用,手机可以root,也可在非root的情况下进行测试, 此时可以获取的性能数据包括:FPS.整机C ...

  10. Javascript的内存泄漏分析

    作为程序员(更高大尚的称谓:研软件研发)的我们,无论是用Javascript,还是.net, java语言,肯定都遇到过内存泄漏的问题.只不过他们都有GC机制来帮助程序员完成内存回收的事情,如果你是C ...