[HNOI 2018]游戏
Description
有 \(n\) 个房间排成一列,编号为 \(1,2,...,n\) ,相邻的房间之间都有一道门。其中 \(m\) 个门上锁,其余的门都能直接打开。现在已知每把锁的钥匙在哪个房间里(每把锁有且只有一把钥匙与之对应)。
现给出 \(p\) 个询问:询问从房间 \(S\) 出发是否能到达房间 \(T\) 。
\(1\le n,p\le 10^6\) , \(0\le m <n\) 。
Solution
推推性质,显然对于每个起点,它能到达的区域一定是一个完整的区间。
\(O(n^2)\) 比较容易搞的,稍微转化一下,把一些约束关系建成图,将与钥匙同侧的房间连边到钥匙所在的房间,钥匙所在的房间连边到异侧的房间。
显然图是具有层次性的,那我可以把最底层的暴力跑出来,逐步上推,每一次都可以利用下一层的信息。
似乎能做到 \(O(n)\) 。考场上想到可能这样的约束关系可能成环(似乎不会),于是还打了个 \(tarjan\) 。因为成环的话,同一个环内的点的“层次”是相同的。
Code
#include <bits/stdc++.h>
#define pb push_back
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
using namespace std;
const int N = 1e6+5;
int read() {
int sum = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') sum = (sum<<1)+(sum<<3)+ch-'0', ch = getchar();
return sum;
}
int n, m, p, d[N], l[N], r[N], q[N], head, tail, in[N];
int dfn[N], low[N], times, S[N], vis[N], sccno[N], sccnum;
vector<int>to[N], scc[N];
struct tt {int to, next; }edge[N<<1];
int path[N], top;
void tarjan(int u) {
low[u] = dfn[u] = ++times; S[++top] = u, vis[u] = 1;
for (int i = path[u]; i; i = edge[i].next) {
int v = edge[i].to;
if (!dfn[v]) {
tarjan(v); low[u] = min(low[u], low[v]);
}else if (vis[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {
++sccnum; int v = 0;
do {
v = S[top--]; scc[sccnum].pb(v);
sccno[v] = sccnum; vis[v] = 0;
}while(u != v);
}
}
void topsort() {
for (int i = 1; i <= sccnum; i++) {if (!in[i]) q[tail++] = i; }
while (head < tail) {
int u = q[head++];
for (int i = 0, sz = to[u].size(); i < sz; i++) {
int v = to[u][i];
--in[v]; if (!in[v]) q[tail++] = v;
}
}
}
void solve(int x) {
int L = x, R = x;
while (true) {
if (R != n && (d[R] >= L && d[R] <= R || d[R] == 0)) {++R, L = Min(L, l[R]), R = Max(R, r[R]); continue; }
if (L != 1 && (d[L-1] >= L && d[L-1] <= R || d[L-1] == 0)) {--L; L = Min(L, l[L]), R = Max(R, r[L]); continue; }
break;
}
l[x] = L, r[x] = R;
}
void add(int u, int v) {edge[++top].to = v, edge[top].next = path[u]; path[u] = top; }
void work() {
n = read(), m = read(), p = read();
for (int i = 1, x, y; i <= m; i++) {
x = read(), y = read(); d[x] = y;
if (y <= x) {
if (x != y) add(x, y);
add(y, x+1);
}else {
if (x+1 != y) add(x+1, y);
add(y, x);
}
}
top = 0;
for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i);
for (int u = 1; u <= n; u++)
for (int i = path[u]; i; i = edge[i].next)
if (sccno[u] != sccno[edge[i].to])
to[sccno[u]].pb(sccno[edge[i].to]), ++in[sccno[edge[i].to]];
topsort();
for (int i = 1; i <= n; i++) l[i] = n+1;
for (int i = sccnum-1; i >= 0; i--) {
int u = q[i];
for (int i = 0, sz = scc[u].size(); i < sz; i++)
solve(scc[u][i]);
}
int s, t;
while (p--) {
s = read(), t = read();
if (l[s] <= t && r[s] >= t) puts("YES");
else puts("NO");
}
}
int main() {work(); return 0; }
[HNOI 2018]游戏的更多相关文章
- 【HNOI 2018】游戏
Problem Description 一次小 \(G\) 和小 \(H\) 在玩寻宝游戏,有 \(n\) 个房间排成一列,编号为 \(1,2,-,n\),相邻房间之间都有 \(1\) 道门.其中一部 ...
- 【HNOI 2018】寻宝游戏
Problem Description 某大学每年都会有一次 \(Mystery\ Hunt\) 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新 ...
- [HNOI 2018]寻宝游戏
Description 题库链接 给出 \(n\) 个 \(m\) 位的二进制数,在每一个二进制数间插入一个 & 或 | ,第 \(0\) 个数为 \(0\) , \(0,1\) 间也要插入符 ...
- 【题解】Luogu P4436 [HNOI/AHOI2018]游戏
原题传送门 \(n^2\)过百万在HNOI/AHOI2018中真的成功了qwqwq 先将没门分格的地方连起来,枚举每一个块,看向左向右最多能走多远,最坏复杂度\(O(n^2)\),但出题人竟然没卡(建 ...
- HNOI 2018 简要题解
寻宝游戏 毒瘤题. 估计考试只会前30pts30pts30pts暴力然后果断走人. 正解是考虑到一个数&1\&1&1和∣0|0∣0都没有变化,&0\&0& ...
- [洛谷P4436] HNOI/AHOI2018 游戏
问题描述 一次小G和小H在玩寻宝游戏,有n个房间排成一列,编号为1,2,...,n,相邻的房间之间都有一道门.其中一部分门上锁(因此需要有对应的钥匙才能开门),其余的门都能直接打开.现在小G告诉了小H ...
- [HNOI 2018]道路
Description 题库链接 给出一棵含有 \(n\) 个叶子节点的二叉树,对于每个非叶子节点的节点,其与左儿子相连的边为公路,其与右儿子相连的边为铁路.对于每个节点,选择一条与其儿子相连的铁路或 ...
- [HNOI 2018]排列
Description 题库链接 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le ai \le n\) ,以及 \(n\) 个整数 \(w_1, w_2, \do ...
- [HNOI/AHOI2018]游戏
题目描述 https://lydsy.com/JudgeOnline/upload/201804/%E6%B9%96%E5%8D%97%E4%BA%8C%E8%AF%95%E8%AF%95%E9%A2 ...
随机推荐
- Spark ML源码分析之四 树
之前我们讲过,在Spark ML中所有的机器学习模型都是以参数作为划分的,树相关的参数定义在treeParams.scala这个文件中,这里构建一个关于树的体系结构.首先,以Decis ...
- 使用linux下的crontab定时任务跑定时脚本
使用linux下的crontab定时任务跑定时脚本 tags:定时任务 定时脚本 crontab linux定时脚本 linux 引言:应该有许多人曾经很好奇一些定时脚本是怎么做出来的.我们这次就来说 ...
- 201621123062《java程序设计》第12周作业总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 思维导图: 2. 面向系统综合设计-图书馆管理系统或购物车 使用流与文件改造你的图书馆管理系统或购物车. 2. ...
- Alpha冲刺Day4
Alpha冲刺Day4 一:站立式会议 今日安排: 我们把项目大体分为四个模块:数据管理员.企业人员.第三方机构.政府人员.完成了数据库管理员模块.因企业人员与第三方人员模块存在大量的一致性,故我们团 ...
- (转)如何在Eclipse中查看JDK类库的源代码
在Eclipse中查看JDK类库的源代码!!! 设置: 1.点 “window”-> "Preferences" -> "Java" -> & ...
- iOS极光推送SDK的使用流程
一.极光推送简介 极光推送是一个端到端的推送服务,使得服务器端消息能够及时地推送到终端用户手机上,整合了iOS.Android和WP平台的统一推送服务.使用起来方便简单,已于集成,解决了原生远程推送繁 ...
- 【iOS】Swift类的继承、构造方法、析构器等复习
一.继承与重写, 防止重写 1.1 基类, 不继承任何类. Swift不想OC或者Java中继承自Object类.定义一个类,不继承任何类,该类就是基类. [java] view plaincopy ...
- nyoj 星期几?
星期几? 时间限制:500 ms | 内存限制:65535 KB 难度:2 描述 Acmer 小鱼儿 埋头ku算一道题 条件:已知给定 一日期 告诉你 ...
- LeetCode & Q38-Count and Say-Easy
String Description: The count-and-say sequence is the sequence of integers with the first five terms ...
- Java NIO之选择器
1.简介 前面的文章说了缓冲区,说了通道,本文就来说说 NIO 中另一个重要的实现,即选择器 Selector.在更早的文章中,我简述了几种 IO 模型.如果大家看过之前的文章,并动手写过代码的话.再 ...