In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

Example:

Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

Note:

  • nums.length will be between 1 and 20000.
  • nums[i] will be between 1 and 65535.
  • k will be between 1 and floor(nums.length / 3).

这道题给了我们一个只包含正数的数组,让我们找三个长度为k的不重叠的子数组,使得所有子数组的数字之和最大。首先我们应该明确的是,暴力搜索在这道题上基本不太可能,因为遍历一个子数组的复杂度是平方级,遍历三个还不得六次方啊,看OJ不削你~那么我们只能另辟蹊径,对于这种求子数组和有关的题目时,一般都需要建立累加和数组,为啥呢,因为累加和数组可以快速的求出任意长度的子数组之和,当然也能快速的求出长度为k的子数组之和。因为这道题只让我们找出三个子数组,那么我们可以先确定中间那个子数组的位置,这样左右两边的子数组的位置范围就缩小了,中间子数组的起点不能是从开头到结尾整个区间,必须要在首尾各留出k个位置给其他两个数组。一旦中间子数组的起始位置确定了,那么其和就能通过累加和数组快速确定。那么现在就要在左右两边的区间内分别找出和最大的子数组,遍历所有的子数组显然不是很高效,如何快速求出呢,这里我们需要使用动态规划Dynamic Programming的思想来维护两个DP数组left和right,其中:

left[i]表示在区间[0, i]范围内长度为k且和最大的子数组的起始位置

right[i]表示在区间[i, n - 1]范围内长度为k且和最大的子数组的起始位置

这两个dp数组各需要一个for循环来更新,left数组都初始化为0,前k个数字没办法,肯定起点都是0,变量total初始化为前k个数字之和,然后从第k+1个数字开始,每次向前取k个,利用累加和数组sums快速算出数字之和,跟total比较,如果大于total的话,那么更新total和left数组当前位置值,否则的话left数组的当前值就赋值为前一位的值。同理对right数组的更新也类似,total初始化为最后k个数字之和,然后从前一个数字向前遍历,如果大于total,更新total和right数组的当前位置,否则right数组的当前值就赋值为后一位的值。一旦left数组和right数组都更新好了,那么就可以遍历中间子数组的起始位置了,然后我们可以通过left和right数组快速定位出左边和右边的最大子数组的起始位置,并快速计算出这三个子数组的所有数字之和,用来更新全局最大值mx,如果mx被更新了的话,记录此时的三个子数组的起始位置到结果res中,参见代码如下:

class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = nums.size(), mx = INT_MIN;
vector<int> sums{}, res, left(n, ), right(n, n - k);
for (int num : nums) sums.push_back(sums.back() + num);
for (int i = k, total = sums[k] - sums[]; i < n; ++i) {
if (sums[i + ] - sums[i + - k] > total) {
left[i] = i + - k;
total = sums[i + ] - sums[i + - k];
} else {
left[i] = left[i - ];
}
}
for (int i = n - - k, total = sums[n] - sums[n - k]; i >= ; --i) {
if (sums[i + k] - sums[i] >= total) {
right[i] = i;
total = sums[i + k] - sums[i];
} else {
right[i] = right[i + ];
}
}
for (int i = k; i <= n - * k; ++i) {
int l = left[i - ], r = right[i + k];
int total = (sums[i + k] - sums[i]) + (sums[l + k] - sums[l]) + (sums[r + k] - sums[r]);
if (mx < total) {
mx = total;
res = {l, i, r};
}
}
return res;
}
};

类似题目:

Best Time to Buy and Sell Stock III

参考资料:

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108231/C++Java-DP-with-explanation-O(n)

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108246/C++-O(n)-time-O(n)-space-concise-solution

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108230/Clean-Java-DP-O(n)-Solution.-Easy-extend-to-Sum-of-K-Non-Overlapping-SubArrays

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和的更多相关文章

  1. [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  2. [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  3. Java实现 LeetCode 689 三个无重叠子数组的最大和(换方向筛选)

    689. 三个无重叠子数组的最大和 给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和. 每个子数组的长度为k,我们要使这3*k个项的和最大化. 返回每个区间起始索引的列表(索引从 0 ...

  4. [Swift]LeetCode689. 三个无重叠子数组的最大和 | Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  5. [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays

    Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping ...

  6. [LeetCode] 918. Maximum Sum Circular Subarray 环形子数组的最大和

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  7. leetcode面试题42. 连续子数组的最大和

      总结一道leetcode上的高频题,反反复复遇到了好多次,特别适合作为一道动态规划入门题,本文将详细的从读题开始,介绍解题思路. 题目描述示例动态规划分析代码结果 题目   面试题42. 连续子数 ...

  8. [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  9. 连续子数组的最大和/1007. Maximum Subsequence Sum (25)

    题目描述 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是,如果向量 ...

随机推荐

  1. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

  2. JS获得一个对象的所有属性和方法

    function displayProp(obj){ var names=""; for(var name in obj){ names+=name+": "+ ...

  3. va_list va_start va_end va_arg 解决变参问题

    解决参数个数不确定的问题. 头文件 #include<stdarg.h> VA_LIST 是在C语言中解决变参问题的一组宏,用于获取不确定个数的参数. #ifdef _M_ALPHA ty ...

  4. Socket程序从windows移植到linux下需要注意的

    )头文件 windows下winsock.h或winsock2.h linux下netinet/in.h(大部分都在这儿),unistd.h(close函数在这儿),sys/socket.h(在in. ...

  5. 201621123043 《Java程序设计》第6周学习总结

    1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰,内容覆盖面向对象的 ...

  6. Codeforces 193 D. Two Segments

    http://codeforces.com/contest/193/problem/D 题意: 给一个1~n的排列,在这个排列中选出两段区间,求使选出的元素排序后构成公差为1的等差数列的方案数. 换个 ...

  7. ThreadLocal源码分析:(一)set(T value)方法

    在ThreadLocal的get(),set()的时候都会清除线程ThreadLocalMap里所有key为null的value. 而ThreadLocal的remove()方法会先将Entry中对k ...

  8. JAVA_SE基础——16.方法

    接触过C语言的同学,这小章节很容易接受.Java中的方法是类似与C语言中的函数  功能和调用方法都类似  只不过叫法不一样  因为java是面向对象  c是面向过程    仅仅是叫法不同.. . 看到 ...

  9. DDD实战进阶第一波(二):开发一般业务的大健康行业直销系统(搭建支持DDD的轻量级框架一)

    要实现软件设计.软件开发在一个统一的思想.统一的节奏下进行,就应该有一个轻量级的框架对开发过程与代码编写做一定的约束. 虽然DDD是一个软件开发的方法,而不是具体的技术或框架,但拥有一个轻量级的框架仍 ...

  10. angular路由守卫

     路由守卫是指当用户满足了某些要求之后才可以离开或者进入某个页面或者场景的时候使用.比如说只有当用户填写了用户名和密码之后才可以进入首页,比如说用户离开某个页面时明月保存信息提示用户是否保存信息后再离 ...