In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

Example:

Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

Note:

  • nums.length will be between 1 and 20000.
  • nums[i] will be between 1 and 65535.
  • k will be between 1 and floor(nums.length / 3).

这道题给了我们一个只包含正数的数组,让我们找三个长度为k的不重叠的子数组,使得所有子数组的数字之和最大。首先我们应该明确的是,暴力搜索在这道题上基本不太可能,因为遍历一个子数组的复杂度是平方级,遍历三个还不得六次方啊,看OJ不削你~那么我们只能另辟蹊径,对于这种求子数组和有关的题目时,一般都需要建立累加和数组,为啥呢,因为累加和数组可以快速的求出任意长度的子数组之和,当然也能快速的求出长度为k的子数组之和。因为这道题只让我们找出三个子数组,那么我们可以先确定中间那个子数组的位置,这样左右两边的子数组的位置范围就缩小了,中间子数组的起点不能是从开头到结尾整个区间,必须要在首尾各留出k个位置给其他两个数组。一旦中间子数组的起始位置确定了,那么其和就能通过累加和数组快速确定。那么现在就要在左右两边的区间内分别找出和最大的子数组,遍历所有的子数组显然不是很高效,如何快速求出呢,这里我们需要使用动态规划Dynamic Programming的思想来维护两个DP数组left和right,其中:

left[i]表示在区间[0, i]范围内长度为k且和最大的子数组的起始位置

right[i]表示在区间[i, n - 1]范围内长度为k且和最大的子数组的起始位置

这两个dp数组各需要一个for循环来更新,left数组都初始化为0,前k个数字没办法,肯定起点都是0,变量total初始化为前k个数字之和,然后从第k+1个数字开始,每次向前取k个,利用累加和数组sums快速算出数字之和,跟total比较,如果大于total的话,那么更新total和left数组当前位置值,否则的话left数组的当前值就赋值为前一位的值。同理对right数组的更新也类似,total初始化为最后k个数字之和,然后从前一个数字向前遍历,如果大于total,更新total和right数组的当前位置,否则right数组的当前值就赋值为后一位的值。一旦left数组和right数组都更新好了,那么就可以遍历中间子数组的起始位置了,然后我们可以通过left和right数组快速定位出左边和右边的最大子数组的起始位置,并快速计算出这三个子数组的所有数字之和,用来更新全局最大值mx,如果mx被更新了的话,记录此时的三个子数组的起始位置到结果res中,参见代码如下:

class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = nums.size(), mx = INT_MIN;
vector<int> sums{}, res, left(n, ), right(n, n - k);
for (int num : nums) sums.push_back(sums.back() + num);
for (int i = k, total = sums[k] - sums[]; i < n; ++i) {
if (sums[i + ] - sums[i + - k] > total) {
left[i] = i + - k;
total = sums[i + ] - sums[i + - k];
} else {
left[i] = left[i - ];
}
}
for (int i = n - - k, total = sums[n] - sums[n - k]; i >= ; --i) {
if (sums[i + k] - sums[i] >= total) {
right[i] = i;
total = sums[i + k] - sums[i];
} else {
right[i] = right[i + ];
}
}
for (int i = k; i <= n - * k; ++i) {
int l = left[i - ], r = right[i + k];
int total = (sums[i + k] - sums[i]) + (sums[l + k] - sums[l]) + (sums[r + k] - sums[r]);
if (mx < total) {
mx = total;
res = {l, i, r};
}
}
return res;
}
};

类似题目:

Best Time to Buy and Sell Stock III

参考资料:

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108231/C++Java-DP-with-explanation-O(n)

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108246/C++-O(n)-time-O(n)-space-concise-solution

https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/discuss/108230/Clean-Java-DP-O(n)-Solution.-Easy-extend-to-Sum-of-K-Non-Overlapping-SubArrays

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和的更多相关文章

  1. [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  2. [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  3. Java实现 LeetCode 689 三个无重叠子数组的最大和(换方向筛选)

    689. 三个无重叠子数组的最大和 给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和. 每个子数组的长度为k,我们要使这3*k个项的和最大化. 返回每个区间起始索引的列表(索引从 0 ...

  4. [Swift]LeetCode689. 三个无重叠子数组的最大和 | Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  5. [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays

    Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping ...

  6. [LeetCode] 918. Maximum Sum Circular Subarray 环形子数组的最大和

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  7. leetcode面试题42. 连续子数组的最大和

      总结一道leetcode上的高频题,反反复复遇到了好多次,特别适合作为一道动态规划入门题,本文将详细的从读题开始,介绍解题思路. 题目描述示例动态规划分析代码结果 题目   面试题42. 连续子数 ...

  8. [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  9. 连续子数组的最大和/1007. Maximum Subsequence Sum (25)

    题目描述 HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是,如果向量 ...

随机推荐

  1. mysql新手入门随笔3

    #求最高工资的员工信息 SELECT * FROM emp WHERE sal = (SELECT max(sal) FROM emp); #删除工资最低的员工信息 DELETE FROM emp W ...

  2. APS期刊投稿准备: REVTex格式

    APS是American Physics Society的简称.旗下比较有影响力的期刊有: "pra, prb, prc, prd, pre, prl, prstab, prstper, o ...

  3. 动态规划(Dynamic programming) 走楼梯

    来自:算法爱好者 有一座高度是10级台阶的楼梯,从下往上走,每跨一步只能向上1级或者2级台阶,要求用程序来求出一共有多少种走法? f(10) = f(9) + f(8) f(9) = f(8) + f ...

  4. 云+社区分享——腾讯云OCR文字识别

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由云+社区运营团队发布在腾讯云+社区 前言 2018年3月27日腾讯云云+社区联合腾讯云智能图像团队共同在客户群举办了腾讯云OCR文字识 ...

  5. Beta Scrum Day 3

    听说

  6. 201621123050 《Java程序设计》第13周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多个用户通过网 ...

  7. 项目Beta冲刺第一天

    1.昨天的困难,今天解决的进度,以及明天要做的事情 昨天的困难:企业自查风险模块仍旧存在部分问题,没有什么大的困难,主要是需求问题,企业人员什么条件之下可以添加风险点,第三方评估人员是否可以上报风险, ...

  8. iOS开发点滴-添加阴影效果

    UIBezierPath *shadowPath = [UIBezierPath bezierPathWithRect:_backView.bounds]; _backView.layer.masks ...

  9. Beta冲刺Day2

    项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...

  10. Swift 2.2 的新特性

    导读:本文来自SwiftGG翻译组,作者@walkingway基于苹果Swift官方博客中Ted Kremenek所撰写的"Swift 2.2 Released!"文章进行了关于S ...