python可用ORM之Pony
Pony是Python的一种ORM,它允许使用生成器表达式来构造查询,通过将生成器表达式的抽象语法树解析成SQL语句。它也有在线ER图编辑器可以帮助你创建Model。
示例分析
Pony语句:
select(p for p in Person if p.age > 20)
翻译成sql语句就是:
SELECT p.id, p.name, p.age, p.classtype, p.mentor, p.gpa, p.degree
FROM person p
WHERE p.classtype IN ('Student', 'Professor', 'Person')
AND p.age > 20
Pony语句:
select(c for c in Customer
if sum(c.orders.price) > 1000)
翻译成sql语句就是:
SELECT "c"."id"
FROM "Customer" "c"
LEFT JOIN "Order" "order-1"
ON "c"."id" = "order-1"."customer"
GROUP BY "c"."id"
HAVING coalesce(SUM("order-1"."total_price"), 0) > 1000
安装Pony
pip install pony
使用Pony
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import datetime
import pony.orm as pny
import sqlite3
# conn = sqlite3.connect('D:\日常python学习PY2\Pony学习\music.sqlite')
# print conn
# database = pny.Database()
# database.bind("sqlite","music.sqlite",create_db=True)
# 路径建议写绝对路径。我这边开始写相对路径报错 unable to open database file
database = pny.Database("sqlite","D:\日常python学习PY2\Pony学习\music.sqlite",create_db=True)
########################################################################
class Artist(database.Entity):
"""
Pony ORM model of the Artist table
"""
name = pny.Required(unicode)
#被外键关联
albums = pny.Set("Album")
########################################################################
class Album(database.Entity):
"""
Pony ORM model of album table
"""
#外键字段artlist,外键关联表Artist,Artist表必须写Set表示被外键关联
#这个外键字段默认就是index=True,除非自己指定index=False才不会创建索引,索引名默认为[idx_表名__字段](artist)
artist = pny.Required(Artist)
title = pny.Required(unicode)
release_date = pny.Required(datetime.date)
publisher = pny.Required(unicode)
media_type = pny.Required(unicode)
# turn on debug mode
pny.sql_debug(True) # 显示debug信息(sql语句)
# map the models to the database
# and create the tables, if they don't exist
database.generate_mapping(create_tables=True) # 如果数据库表没有创建表
运行之后生成sqlite如下:
上述代码对应的sqlite语句是:
GET CONNECTION FROM THE LOCAL POOL
PRAGMA foreign_keys = false
BEGIN IMMEDIATE TRANSACTION
CREATE TABLE "Artist" (
"id" INTEGER PRIMARY KEY AUTOINCREMENT,
"name" TEXT NOT NULL
)
CREATE TABLE "Album" (
"id" INTEGER PRIMARY KEY AUTOINCREMENT,
"artist" INTEGER NOT NULL REFERENCES "Artist" ("id"),
"title" TEXT NOT NULL,
"release_date" DATE NOT NULL,
"publisher" TEXT NOT NULL,
"media_type" TEXT NOT NULL
)
CREATE INDEX "idx_album__artist" ON "Album" ("artist")
SELECT "Album"."id", "Album"."artist", "Album"."title", "Album"."release_date", "Album"."publisher", "Album"."media_type"
FROM "Album" "Album"
WHERE 0 = 1
SELECT "Artist"."id", "Artist"."name"
FROM "Artist" "Artist"
WHERE 0 = 1
COMMIT
PRAGMA foreign_keys = true
CLOSE CONNECTION
插入/增加数据
详情见:https://github.com/flowpig/daily_demos
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import datetime
import pony.orm as pny
from models import Album, Artist
from database import PonyDatabase
# ----------------------------------------------------------------------
@pny.db_session
def add_data():
""""""
new_artist = Artist(name=u"Newsboys")
bands = [u"MXPX", u"Kutless", u"Thousand Foot Krutch"]
for band in bands:
artist = Artist(name=band)
album = Album(artist=new_artist,
title=u"Read All About It",
release_date=datetime.date(1988, 12, 01),
publisher=u"Refuge",
media_type=u"CD")
albums = [{"artist": new_artist,
"title": "Hell is for Wimps",
"release_date": datetime.date(1990, 07, 31),
"publisher": "Sparrow",
"media_type": "CD"
},
{"artist": new_artist,
"title": "Love Liberty Disco",
"release_date": datetime.date(1999, 11, 16),
"publisher": "Sparrow",
"media_type": "CD"
},
{"artist": new_artist,
"title": "Thrive",
"release_date": datetime.date(2002, 03, 26),
"publisher": "Sparrow",
"media_type": "CD"}
]
for album in albums:
a = Album(**album)
if __name__ == "__main__":
db = PonyDatabase()
db.bind("sqlite", "D:\日常python学习PY2\Pony学习\music.sqlite", create_db=True)
db.generate_mapping(create_tables=True)
add_data()
# use db_session as a context manager
with pny.db_session:
a = Artist(name="Skillet")
'''
您会注意到我们需要使用一个装饰器db_session来处理数据库。
它负责打开连接,提交数据并关闭连接。 你也可以把它作为一个上
下文管理器,with pny.db_session
'''
更新数据
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import pony.orm as pny
from models import Artist, Album
from database import PonyDatabase
db = PonyDatabase()
db.bind("sqlite", "D:\日常python学习PY2\Pony学习\music.sqlite", create_db=True)
db.generate_mapping(create_tables=True)
with pny.db_session:
band = Artist.get(name="Newsboys")
print band.name
for record in band.albums:
print record.title
# update a record
band_name = Artist.get(name="Kutless")
band_name.name = "Beach Boys"
#使用生成器形式查询
'''
result = pny.select(i.name for i in Artist)
result.show()
结果:
i.name
--------------------
Newsboys
MXPX
Beach Boys
Thousand Foot Krutch
Skillet
'''
删除记录
import pony.orm as pny
from models import Artist
with pny.db_session:
band = Artist.get(name="MXPX")
band.delete()
Pony补充
可以连接的数据库:
##postgres
db.bind('postgres', user='', password='', host='', database='')
##sqlite create_db:如果数据库不存在创建数据库文件
db.bind('sqlite', 'filename', create_db=True)
##mysql
db.bind('mysql', host='', user='', passwd='', db='')
##Oracle
db.bind('oracle', 'user/password@dsn')
Entity(实体)类似mvc里面的model
在创建实体实例之前,需要将实体映射到数据库表,生成映射后,可以通过实体查询数据库并创建新的实例。db.Entity自己定义新的实体必须从db.Entity继承
属性
class Customer(db.Entity):
name = Required(str)
picture = Optional(buffer)
sql_debug(True) # 显示debug信息(sql语句)
db.generate_mapping(create_tables=True) # 如果数据库表没有创建表
属性类型
- Required
- Optional
- PrimaryKey
- Set
Required and Optional
通常实体属性分为Required(必选)和Optional(可选)
PrimaryKey(主键)
默认每个实体都有一个主键,默认添加了id=PrimaryKey(int,auto=True)属性
class Product(db.Entity):
name = Required(str, unique=True)
price = Required(Decimal)
description = Optional(str)
#等价于下面
class Product(db.Entity):
id = PrimaryKey(int, auto=True)
name = Required(str, unique=True)
price = Required(Decimal)
description = Optional(str)
Set
定义了一对一,一对多,多对多等数据结构
# 一对一
class User(db.Entity):
name = Required(str)
cart = Optional("Cart") #必须Optional-Required or Optional-Optional
class Cart(db.Entity):
user = Required("User")
# 多对多
class Student(db.Entity):
name = pny.Required(str)
courses = pny.Set("Course")
class Course(db.Entity):
name = pny.Required(str)
semester = pny.Required(int)
students = pny.Set(Student)
pny.PrimaryKey(name, semester) #联合主键
pny.sql_debug(True) # 显示debug信息(sql语句)
db.generate_mapping(create_tables=True) # 如果数据库表没有创建表
#-------------------------------------------------------
#一对多
class Artist(database.Entity):
"""
Pony ORM model of the Artist table
"""
name = pny.Required(unicode)
#被外键关联
albums = pny.Set("Album")
class Album(database.Entity):
"""
Pony ORM model of album table
"""
#外键字段artlist,外键关联表Artist,Artist表必须写Set表示被外键关联
#这个外键字段默认就是index=True,除非自己指定index=False才不会创建索引,索引名默认为[idx_表名__字段](artist)
artist = pny.Required(Artist) #外键字段(数据库显示artist)
title = pny.Required(unicode)
release_date = pny.Required(datetime.date)
publisher = pny.Required(unicode)
media_type = pny.Required(unicode)
# Compositeindexes(复合索引)
class Example1(db.Entity):
a = Required(str)
b = Optional(int)
composite_index(a, b)
#也可以使用字符串composite_index(a, 'b')
属性数据类型
格式为 :
属性名 = 属性类型(数据类型)
str
unicode
int
float
Decimal
datetime
date
time
timedelta
bool
buffer ---used for binary data in Python 2 and 3
bytes ---used for binary data in Python 3
LongStr ---used for large strings
LongUnicode ---used for large strings
UUID
attr1 = Required(str)
# 等价
attr2 = Required(unicode) attr3 = Required(LongStr)
# 等价
attr4 = Required(LongUnicode) attr1 = Required(buffer) # Python 2 and 3 attr2 = Required(bytes) # Python 3 only #字符串长度,不写默认为255
name = Required(str,40) #VARCHAR(40) #整数的大小,默认32bit
attr1 = Required(int, size=8) # 8 bit - TINYINT in MySQL
attr2 = Required(int, size=16) # 16 bit - SMALLINT in MySQL
attr3 = Required(int, size=24) # 24 bit - MEDIUMINT in MySQL
attr4 = Required(int, size=32) # 32 bit - INTEGER in MySQL
attr5 = Required(int, size=64) # 64 bit - BIGINT in MySQL #无符号整型
attr1 = Required(int, size=8, unsigned=True) # TINYINT UNSIGNED in MySQL # 小数和精度
price = Required(Decimal, 10, 2) #DECIMAL(10,2) # 时间
dt = Required(datetime,6) # 其它参数
unique 是否唯一
auto 是否自增
default 默认值
sql_default
created_at = Required(datetime, sql_default=’CURRENT_TIMESTAMP’)
index 创建索引
index='index_name' 指定索引名称
lazy 延迟加载的属性加载对象
cascade_delete 关联删除对象
column 映射到数据库的列名
columns Set(多对多列名)
table 多对多中间表的表名字
nullable 允许该列为空
py_check 可以指定一个函数,检查数据是否合法和修改数据 class Student(db.Entity):
name = Required(str)
gpa = Required(float, py_check=lambda val: val >= 0 and val <= 5)
实例操作
# 获取实例
p = Person.get(name="Person") #返回单个实例,如同
Django ORM的get
#------------------------------
# 查询
persons = Person.select()
'''
select并没有连接数据库查询,只是返回一个Query object,调用persons[:]返回所有Person实例
'''
# limit
persons [1:5]
# show
persons.show()
# 生成器表达式查询,然后解析AST树的方式构造SQL语句
select(p for p in Person)
#和Person.select()一样返回Query object
select((p.id, p.name) for p in Person)[:]
# 带where条件查询
select((p.id, p.name) for p in Person if p.age ==20)[:]
# 分组聚合查询
select((max(p.age)) for p in Person)[:] #[25]
max(p.age for p in Person) #25
select(p.age for p in Person).max() #25
#-----------------------------
# 修改实例
@db_session
def update_persons():
p = Person.get(id=2)
p.page = 1000
commit()
# 删除
@db_session
def delete_persons():
p = Person.get(id=2)
p.delete()
commit()
pony使用还可以使用游标操作(这样就可以写原生sql语句了)
result = db.execute('''select name from Artist''')
print result.fetchall()
[(u'Newsboys',), (u'Beach Boys',), (u'Thousand Foot Krutch',), (u'Skillet',)]
如果你不想使用游标操作而想使用sql语句还可以这样
result = db.Artist.select_by_sql('''select * from Artist WHERE id=3''')
print dir(result[0])
print result[0].name
类似Django ORM的save函数
before_insert()
Is called only for newly created objects before it is inserted into the database.
before_update()
Is called for entity instances before updating the instance in the database.
before_delete()
Is called before deletion the entity instance in the database.
after_insert()
Is called after the row is inserted into the database.
after_update()
Is called after the instance updated in the database.
after_delete()
Is called after the entity instance is deleted in the database.
例如:
class Message(db.Entity):
title = Required(str)
content = Required(str)
def before_insert(self):
print("Before insert! title=%s" % self.title)
参考资料:
http://www.blog.pythonlibrary.org/2014/07/21/python-101-an-intro-to-pony-orm/
https://docs.ponyorm.com/api_reference.html)
python可用ORM之Pony的更多相关文章
- Python MySQL ORM QuickORM hacking
# coding: utf-8 # # Python MySQL ORM QuickORM hacking # 说明: # 以前仅仅是知道有ORM的存在,但是对ORM这个东西内部工作原理不是很清楚, ...
- Python学习---ORM查询之基于对象的正向/反向/聚合/分组/Q/F查询
ORM查询之基于对象的正向查询与反向查询 对象形式的查询 # 正向查询 ret1=models.Book.objects.first() print(ret1.title) print(ret1.pr ...
- python轻量级orm框架 peewee常用功能速查
peewee常用功能速查 peewee 简介 Peewee是一种简单而小的ORM.它有很少的(但富有表现力的)概念,使它易于学习和直观的使用. 常见orm数据库框架 Django ORM peewee ...
- Python实现ORM
ORM即把数据库中的一个数据表给映射到代码里的一个类上,表的字段对应着类的属性.将增删改查等基本操作封装为类对应的方法,从而写出更干净和更富有层次性的代码. 以查询数据为例,原始的写法要Python代 ...
- python 模型 ORM简介
Django之ORM (Object Relational Mapping(ORM)一.ORM介绍1.ORM概念 对象关系映射模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术.2.OR ...
- python之ORM操作
1. SQLalchemy简介 SQLAlchemy是一个开源的SQL工具包,基本Python编程语言的MIT许可证而发布的对象关系映射器.SQLAlchemy提供了“一个熟知的企业级全套持久性模式, ...
- Python sqlalchemy orm 多对多外键关联
多对多外键关联 注:使用三张表进行对应关联 实现代码: # 创建3个表 配置外键关联 # 调用Column创建字段 加类型 from sqlalchemy import Table, Column, ...
- python轻量级orm
python下的orm使用SQLAlchemy比较多,用了一段时间感觉不顺手,主要问题是SQLAlchemy太重,所以自己写了一个orm,实现方式和netsharp类似,oql部分因为代码比较多,没有 ...
- Python - Django - ORM 操作表
ORM 的对应关系: 类 ---> 数据库表对象 ---> 数据库行属性 ---> 字段 操作数据库表 ---> ...
随机推荐
- codechef [snackdown2017 Onsite Final] Minimax
传送门 题目描述 考虑一个 N 行 N 列的网格,行列编号均为 1 ∼ N.每个格子中包含一个整数.记 ri 为第 i 行的最小值,Ci 为第 i 列的最大值.我们称一个网格为好的,当且仅当满足:$$ ...
- c++(爬楼梯)
前两天上网的时候看到一个特别有意思的题目,在这里和朋友们分享一下: 有一个人准备开始爬楼梯,假设楼梯有n个,这个人只允许一次爬一个楼梯或者一次爬两个楼梯,请问有多少种爬法? 在揭晓答案之前,朋友们可以 ...
- 二 @ResponseBody用法
@ResponseBody底层是通过response.getwriter()方法将数据写回前 台 @ResponseBody @RequestMapping (value="/queryLi ...
- 程序员听到bug后的N种反应,太形象了
程序员的世界里,不止有代码,还有bug,bug,bug 当出现bug时,程序员们的反应是怎样的呢?
- 利用object.defineProperty实现数据与视图绑定
如今比较火的mvvm框架,例如vue就是利用es5的defineProperty来实现数据与视图绑定的,下面我来介绍一下defineProperty的用法. var people= {} Object ...
- HDU 5912 Fraction(模拟——分子式化简求解)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5912 Problem Description Mr. Frog recently studied h ...
- Oracle_where子句
Oracle_where子句 --1.查询员工名为'SMITH'的信息 select * from emp where ename = 'SMITH'; --2.查询在1980/12/17入职的员 ...
- Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
- console.log 用法
转自http://www.cnblogs.com/ctriphire/p/4116207.html 大家都有用过各种类型的浏览器,每种浏览器都有自己的特色,本人拙见,在我用过的浏览器当中,我是最喜欢C ...
- 基于 HTML5 WebGL 的 3D 网络拓扑结构图
现在,3D 模型已经用于各种不同的领域.在医疗行业使用它们制作器官的精确模型:电影行业将它们用于活动的人物.物体以及现实电影:视频游戏产业将它们作为计算机与视频游戏中的资源:在科学领域将它们作为化合物 ...