数据分析之Numpy
Numpy
numpy.array:将数组转换成向量
numpy.array([,,,])
转化成1维向量
numpy.array([[,,],[,,],[,,]])
转换成二维向量 vector = numpy.array([[1,2,3],[4,5,6],[8,9,10]])
vector.shape (对象.方法) 形状:三行三列 对象.dtype 数据类型 全为数字为整型,有一个float全为float,同理有一个字符串,类型为字符串,如[8,9,'10']
转换成向量取值
对象[1,4] 第二个样本的第四个,即2行4列对应的值
切片(同python)
(1) 对象.[0:3] 取前三个
(2) matrix[0,1] 取第一行第二个值 matrix[:,1] 取所有行中的第二列的值
判断
对象==6, 返回一个只有true和false的矩阵,对象中等于6的值为true,其余位置为false dtype为bool
注:可以将true当作索引值在取回值 6
类型转换
对象.astype(float) 括号中为要转换的类型,此例转换成float型
运算
对象.sum(asis=1) 1代表行 ,0代表列 此例为对每行进行求和
矩阵属性
a = numpy.arange(15).reshape(3,5) 释义:创造0到14一共15个数,形状为 3行5列 (a.shape) numpy.arange(10,30,5) 从10开始,30结束(不包含30),5为步长 结果[10,15,20,25]
对象.ndim 即a.ndim,对象是几维数组
对象.size 多少元素
矩阵操作
初始化1:numpy.zeros((3,4)) 3行4列 元素都为0 同理numpy.ones((3,4)) 3行4列 元素都为1 维度只有行和列,所以是2维。
numpy.ones((2,3,4)) 3维数组
初始化2:numpy.random.random((2,3)) 0-1之间的随机数,2行3列
初始化3:numpy.linspace(0,3.14,100) 在0-3.14之间平均取100个值
矩阵运算与线代相同 [ [1,2]
a=[[1,2] b=[[5,6] [3,4]
[3,4]] [7,8]] [5,6] [1,2,5,6]
numpy.vstack((a,b)) 行拼接 如: [7,8]] numpy.hstack((a,b)) 列拼接 [3,4,7,8]
numpy.hsplite(a,3) a为矩阵,隔4列切一刀,切成一个一个array numpy.vsplite(a,3)
复制
a=b和b=a.view() 前者完全相同,后者浅拷贝,但是对一个中的数值进行操作二者数值都改变,即啊,b共用一组数据
b=a.copy() 推荐使用,修改b数值,a中的数值不发生改变
对象.argmax(axis=0) 找出每一列中的最大值
numpy.tile(a,(4,2)) 如:传进来一个a=[10,20,30],行X4,列X2
sort 排序
数据分析之Numpy的更多相关文章
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 数据分析入门——numpy类库基础知识
numpy类库是数据分析的利器,用于高性能的科学计算和数据分析.使用python进行数据分析,numpy这个类库是必须掌握的.numpy并没有提供强大的数据分析功能,而是它提供的ndarray数据结构 ...
- 数据分析 之 NumPy
目录 简单了解数据分析 Python数据分析三剑客(Numpy,Pandas,Matplotlib) 简单使用np.array() 使用np的routines函数创建数组 ndarray N维数组对象 ...
- 数据分析01 /numpy模块
数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 数据分析之Numpy基础:数组和适量计算
Numpy(Numerical Python)是高性能科学计算和数据分析的基础包. 1.Numpy的ndarray:一种多维数组对象 对于每个数组而言,都有shape和dtype这两个属性来获取数组的 ...
- Python数据分析之numpy学习
Python模块中的numpy,这是一个处理数组的强大模块,而该模块也是其他数据分析模块(如pandas和scipy)的核心. 接下面将从这5个方面来介绍numpy模块的内容: 1)数组的创建 2)有 ...
- 《利用python进行数据分析》NumPy基础:数组和矢量计算 学习笔记
一.有关NumPy (一)官方解释 NumPy is the fundamental package for scientific computing with Python. It contains ...
- Python数据分析(二): Numpy技巧 (1/4)
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np
- Python数据分析(二): Numpy技巧 (2/4)
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性. 昨天晚上发了第一 ...
随机推荐
- 【面试】Spring事务面试考点吐血整理(建议珍藏)
Spring和事务的关系 关系型数据库.某些消息队列等产品或中间件称为事务性资源,因为它们本身支持事务,也能够处理事务. Spring很显然不是事务性资源,但是它可以管理事务性资源,所以Spring和 ...
- 基于vue.js的简单用户管理
功能描述:添加.修改.搜索过滤 效果图: <!DOCTYPE html> <html lang="en"> <head> <title&g ...
- SQL Server读写分离之发布订阅
一.发布 上面有多种发布方式,这里我选择事物发布,具体区别请自行百度. 点击下一步.然后继续选择需要发布的对象. 如果需要筛选发布的数据点击添加. 根据自己的计划选择发布的时间. 点击安全设置,设置 ...
- java爬虫系列第一讲-爬虫入门
1. 概述 java爬虫系列包含哪些内容? java爬虫框架webmgic入门 使用webmgic爬取 http://ady01.com 中的电影资源(动作电影列表页.电影下载地址等信息) 使用web ...
- Dubbo和Spring Cloud微服务架构'
微服务架构是互联网很热门的话题,是互联网技术发展的必然结果.它提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.虽然微服务架构没有公认的技术标准和规范或者草案,但业 ...
- es6之三个点(...)扩展运算符
我们看一个语法,你就知道es6对我们码农多友好,毕竟世界在进步 let arr=[1,2,3,4,54,56] console.log(...arr) 结果是????? 没错 ...这个运算符就是把这 ...
- 微信小程序 canvas 绘制圆形状
page({ // 绘制canvas drawCanvas:function(){ const ctx = wx.createCanvasContext('poster') // 画圆形二维码 thi ...
- 基于.net EF6 MVC5+WEB Api 的Web系统框架总结(1)-Web前端页面
本 Web 系统框架基于C# EF6+MVC+WebApi的快速应用开发平台.本节主要介绍Web前端页面设计与实现.Web前端页面主要分为普通列表页面.树状导航列表页面.普通编辑页面.数据导入页面.向 ...
- Android 沉浸式状态栏完美解决方案
现在搜索Android 沉浸式状态栏,真的是一堆一堆,写的特别多,但是真正用的舒服的真没有,在这里自己整理一下开发记录 注意,在使用这个步骤过程之前,请把之前设置的代码注释一下 把布局带有androi ...
- Go语言打造以太坊智能合约测试框架(level1)
传送门: 柏链项目学院 Go语言打造以太坊智能合约测试框架 前言 这是什么? 这是一个基于go语言编写的,自动化测试以太坊智能合约的开发框架,使用此框架,可以自动化的部署合约,自动测试合约内的功能函数 ...