裸题...平均权值最小的环....

注意$dfs-spfa$时$dfs(cl)$...不要写成$dfs(u)$

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u,v;
double w;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
}
double d[N],g;
int vis[N],cl;
bool dfs(int u){
vis[u]=cl;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;double w=e[i].w-g;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(vis[u]==vis[v]) return true;
else if(dfs(v)) return true;
}
}
vis[u]=;
return false;
}
bool NegativeCircle(double mid){
g=mid;
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
for(cl=;cl<=n;cl++) if(dfs(cl)) return true;
return false;
}
bool check(double mid){return NegativeCircle(mid);}
void solve(){
double l=-1e7,r=1e7;
while(r-l>eps){
double mid=(l+r)/2.0;
if(check(mid)) r=mid;
else l=mid;
}
printf("%.8lf",l);
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
for(int i=;i<=m;i++){
u=read(),v=read();
scanf("%lf",&w);
ins(u,v,w);
}
solve();
}

BZOJ 1486: [HNOI2009]最小圈 [01分数规划]的更多相关文章

  1. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  2. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  3. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  4. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  5. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  6. BZOJ 1486 最小圈(01分数规划)

    好像是很normal的01分数规划题.最小比率生成环. u(c)=sigma(E)/k.转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0. 所以答案对于这个式子是有单调性的 ...

  7. bzoj 1486: [HNOI2009]最小圈

    Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Sample Output 3.66666667 HIN ...

  8. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  9. [BZOJ 1486][HNOI2009]最小圈(二分答案+dfs写的spfa判负环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1486 分析:容易想到先二分答案x,然后把所有边的权值-x,那么如果图中存在权值和为0的 ...

随机推荐

  1. HAUTOJ 1283 YK的书架

    题目描述     YK新买了2n+1本相同的书,准备放在家里的3层书架上(每一层放书的数量>=0且<=n).不过YK摆放他的书有些特殊的要求,即任意两层摆放的书的数目之和,严格大于另一层的 ...

  2. JavaScript八张思维导图—编程实践

    JS基本概念 JS操作符 JS基本语句 JS数组用法 Date用法 JS字符串用法 JS编程风格 JS编程实践 不知不觉做前端已经五年多了,无论是从最初的jQuery还是现在火热的Angular,Vu ...

  3. javascript 思维导图 总结

    项目接近尾声,闲暇时间对JavaScript的总结,包含数组的一些知识(创建.访问.关联数组,数组API,以及二维数组).js的内置对象.面向对象概念和特征.以及部分ES5特性. 大纲如图: 如需可下 ...

  4. Flume环境搭建_五种案例

    Flume环境搭建_五种案例 http://flume.apache.org/FlumeUserGuide.html A simple example Here, we give an example ...

  5. HTTP协议简介

    一.简介 HTTP(HyperText Transfer Protocol, 超文本传输协议) 是访问互联网使用的核心通信协议,也是所有web应用程序使用的通信协议.消息模型:客户端发送请求消息,服务 ...

  6. SpringMVC Hello(IDEA)

    以前一想要学习Java相关知识的时候,就会认为.NET FrameWork的相关技术还没学个通透还夹生饭.现在感觉只会.NET有些单一,需要多掌握几种开发技术,尽管.NET还没达到精通.貌似Hello ...

  7. removeClass()

    定义和用法 removeClass() 方法从被选元素移除一个或多个类. 注释:如果没有规定参数,则该方法将从被选元素中删除所有类. 语法 $(selector).removeClass(class) ...

  8. curl说明

    https://baike.baidu.com/item/curl/10098606?fr=aladdin curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种L ...

  9. SSL协议之数据加密过程详解

    前言 总括: 原文博客地址:SSL协议之数据加密过程详解 知乎专栏&&简书专题:前端进击者(知乎)&&前端进击者(简书) 博主博客地址:Damonare的个人博客 生活 ...

  10. Java中 equals() 和 == 的区别

    1)对于==,如果作用于基本数据类型的变量,则直接比较其存储的 "值"是否相等: 如果作用于引用类型的变量,则比较的是所指向的对象的地址 2)对于equals方法,注意:equal ...