4870: [Shoi2017]组合数问题

题意:求

\[\sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p
\]

\(n \le 10^9, 0\le r < k \le 50\)


组合数推了一下,有一些有趣的性质但是并不好做

想到了从意义方面考虑,但是没有深入,去看了题解


n大k小,一副矩乘的样子

就是求“n个物品取模k余r个的方案数”

因为取的个数模k,变得很有意思,可以把组合数的递推式矩乘了...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, mo, k, r;
struct matrix {
int a[51][51];
matrix() {memset(a, 0, sizeof(a));}
int* operator [](int x) {return a[x];}
} f, a;
matrix operator *(matrix a, matrix b) {
int n = k;
matrix c;
for(int i=0; i<n; i++)
for(int k=0; k<n; k++) if(a[i][k])
for(int j=0; j<n; j++) if(b[k][j])
c[i][j] = (c[i][j] + (ll) a[i][k] * b[k][j] %mo) %mo;
return c;
}
matrix operator ^(matrix a, ll b) {
int n = k;
matrix c;
for(int i=0; i<n; i++) c[i][i] = 1;
for(; b; b>>=1, a=a*a) if(b&1) c=c*a;
return c;
} int Pow(ll a, int b) {
ll ans=1;
for(; b; b>>=1, a=a*a%mo)
if(b&1) ans=ans*a%mo;
return ans;
}
int main() {
freopen("in", "r", stdin);
n=read(); mo=read(); k=read(); r=read();
if(k == 1) {printf("%d", Pow(2, n)); return 0;}
for(int i=0; i<k; i++) f[i][i] = 1, f[(i+1)%k][i] = 1;
f = f ^ ((ll) n * k);
a[0][0] = 1;
a = f * a;
printf("%d\n", a[r][0]);
}

bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]的更多相关文章

  1. BZOJ 4870: [Shoi2017]组合数问题 矩阵乘法_递推

    Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) f ...

  2. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  3. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  4. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  5. BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法

    注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...

  6. 矩阵乘法优化DP复习

    前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...

  7. 矩阵乘法优化DP

    本文讲一下一些基本的矩阵优化DP的方法技巧. 定义三个矩阵A,B,C,其中行和列分别为$m\times n,n \times p,m\times p$,(其中行是从上往下数的,列是从左往右数的) $C ...

  8. 51nod 1583 犯罪计划——矩阵乘法优化dp

    文泽想在埃及做案n次,并且想在最后不用得到惩罚.案件的被分成几种类型.比如说,案件A,当案件A被重复犯两次时,案件A将被认为不是犯罪案件,因此犯案人不用得到惩罚.也就是说,案件A被犯偶数次时,犯案人将 ...

  9. 【bzoj2476】战场的数目 矩阵乘法优化dp

    题目描述 (战场定义为对于最高的一列向两边都严格不增的“用积木搭成”的图形) 输入 输入文件最多包含25组测试数据,每个数据仅包含一行,有一个整数p(1<=p<=109),表示战场的图形周 ...

随机推荐

  1. Vue中的$set的使用

    在我们使用vue进行开发的过程中,可能会遇到一种情况:当生成vue实例后,当再次给数据赋值时,有时候并不会自动更新到视图上去: 当我们去看vue文档的时候,会发现有这么一句话:如果在实例创建之后添加新 ...

  2. Java中Calendar.DAY_OF_WEEK、DAY_OF_MONTH需要减一的原因

    Java中对日期的处理需要用到Calendar类,其中有几个方法在使用时需要新手注意.1. 在获取月份时,Calendar.MONTH + 1 的原因(Java中Calendar.MONTH返回的数值 ...

  3. TIJ笔记:内部类的初始化

    看编程思想有点时间了,看到了些在马士兵老师没有讲过的部分,所以打算记录一下 内部类的初始化: .内部类的初始化和外部类的初始化略有不同,可以使用 外部类对象.new 内部类对象 创建内部类对象 pac ...

  4. dede标签:定义文件夹

    相关函数: 文件\include\taglib\arclist.lib.php第7行 function lib_arclist(&$ctag,&$refObj)

  5. destoon分页

    <?php //控制分页//分页$pagesize=4;$pagesql="SELECT COUNT(*) AS num FROM `{$DT_PRE}` company"; ...

  6. 版本控制——TortoiseSVN (4)多版本并行开发 B

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  7. DLL导出全局变量在多个DLL中调用

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  8. scrapy_随机user-agent

    什么是user-agent? 用户代理,服务器识别用户的操作系统,浏览器类型和渲染引擎,不同浏览器的user-agent是不同的 如何随机更改user-agent? 1. 在setting中添加use ...

  9. tomcat server.xml context path配置需要注意的事情

    在tomcat下放个war包,假如我是这样配置server.xml的,<Context docBase="eggchina" path="/yanan" ...

  10. junit4X系列源码--总体介绍

    原文出处:http://www.cnblogs.com/caoyuanzhanlang/p/3530267.html.感谢作者的无私分享. Junit是一个可编写重复测试的简单框架,是基于Xunit架 ...