bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题
题意:求
\]
\(n \le 10^9, 0\le r < k \le 50\)
组合数推了一下,有一些有趣的性质但是并不好做
想到了从意义方面考虑,但是没有深入,去看了题解
n大k小,一副矩乘的样子
就是求“n个物品取模k余r个的方案数”
因为取的个数模k,变得很有意思,可以把组合数的递推式矩乘了...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, mo, k, r;
struct matrix {
int a[51][51];
matrix() {memset(a, 0, sizeof(a));}
int* operator [](int x) {return a[x];}
} f, a;
matrix operator *(matrix a, matrix b) {
int n = k;
matrix c;
for(int i=0; i<n; i++)
for(int k=0; k<n; k++) if(a[i][k])
for(int j=0; j<n; j++) if(b[k][j])
c[i][j] = (c[i][j] + (ll) a[i][k] * b[k][j] %mo) %mo;
return c;
}
matrix operator ^(matrix a, ll b) {
int n = k;
matrix c;
for(int i=0; i<n; i++) c[i][i] = 1;
for(; b; b>>=1, a=a*a) if(b&1) c=c*a;
return c;
}
int Pow(ll a, int b) {
ll ans=1;
for(; b; b>>=1, a=a*a%mo)
if(b&1) ans=ans*a%mo;
return ans;
}
int main() {
freopen("in", "r", stdin);
n=read(); mo=read(); k=read(); r=read();
if(k == 1) {printf("%d", Pow(2, n)); return 0;}
for(int i=0; i<k; i++) f[i][i] = 1, f[(i+1)%k][i] = 1;
f = f ^ ((ll) n * k);
a[0][0] = 1;
a = f * a;
printf("%d\n", a[r][0]);
}
bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]的更多相关文章
- BZOJ 4870: [Shoi2017]组合数问题 矩阵乘法_递推
Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) f ...
- 形态形成场(矩阵乘法优化dp)
形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法
注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...
- 矩阵乘法优化DP复习
前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...
- 矩阵乘法优化DP
本文讲一下一些基本的矩阵优化DP的方法技巧. 定义三个矩阵A,B,C,其中行和列分别为$m\times n,n \times p,m\times p$,(其中行是从上往下数的,列是从左往右数的) $C ...
- 51nod 1583 犯罪计划——矩阵乘法优化dp
文泽想在埃及做案n次,并且想在最后不用得到惩罚.案件的被分成几种类型.比如说,案件A,当案件A被重复犯两次时,案件A将被认为不是犯罪案件,因此犯案人不用得到惩罚.也就是说,案件A被犯偶数次时,犯案人将 ...
- 【bzoj2476】战场的数目 矩阵乘法优化dp
题目描述 (战场定义为对于最高的一列向两边都严格不增的“用积木搭成”的图形) 输入 输入文件最多包含25组测试数据,每个数据仅包含一行,有一个整数p(1<=p<=109),表示战场的图形周 ...
随机推荐
- 慕课网-前端JavaScrpt基础面试技巧-学习笔记
章节目录: JS基础知识(上)--讲解 JS 基础语法相关的面试题,分析原理以及解答方法.这一章节讲解了基础知识的第一部分:变量的类型和计算.以及JS "三座大山" -- 原型.作 ...
- [国嵌笔记][023][ARM寻址方式]
寻找方式 1.处理器根据指令中给出的信息来找到指令所需操作数的方式 2.立即数寻址 操作数本身在指令中给出,立即数前加”#”表示立即数寻址,操作数在指令中 3.寄存器寻址 利用寄存器中的数值作为操作数 ...
- URL编码的方法
Global 对象的encodeURI()和encodeURIComponent()方法可以对URI(Uniform ResourceIdentifiers,通用资源标识符)进行编码,以便发送给浏览器 ...
- 算法-java代码实现归并排序
归并排序 对于一个int数组,请编写一个归并排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组. 测试样例: [1,2,3,5,2,3],6 [1,2,2,3,3,5] ...
- 关于iconfont字体图标的使用
今天用iconfont遇到了字体图标的使用问题.关于使用字体图标的方式在这里有介绍三种方式(css和js的引入和平时一样) 首先你要分清是用单个字体图标icon,还是多个字体图标icon 关于使用代码 ...
- jQuery学习笔记一
一.jQuery版本兼容 jQuery版本2以上不支持IE6,7,8浏览器. 如果需要支持IE6/7/8,那么请选择1.9 同样还可以通过条件注释在使用IE6/7/8时只包含进1.9 <!--[ ...
- Python 使用Pillow模块生成验证码
1.安装 pip3 install pillow 2.使用步骤 生成验证码和验证字符串 绘制图片,将验证码放入session中 将图片返回给页面 3.代码demo #!/usr/bin/env pyt ...
- 开地址哈希表(Hash Table)的接口定义与实现分析
开地址哈希函数的接口定义 基本的操作包括:初始化开地址哈希表.销毁开地址哈希表.插入元素.删除元素.查找元素.获取元素个数. 各种操作的定义如下: ohtbl_init int ohtbl_init ...
- banner无缝轮播【小封装】
转载:http://www.qdfuns.com/notes/23446/d1691a1edf5685396813cc85ae6ab10f.html 一直在重复的写banner,写了了好几个,然后每次 ...
- 流API--流的收集
前面的一系列博客中,我们都是从一个集合中拿到一个流,但是有时候需要执行反操作,就是从流中获得集合.实际编码中,当我们处理完流后,我们通常想查看下结果,而不是将他们聚合成一个值.我们可以调用iterat ...