D 区间求和 [数学 树状数组]
D 区间求和
题意:求
\]
比赛时因为被B卡了没有深入想这道题 结果B没做出来后面的题也没做
化一下式子
&= \sum_{l=1}^n \sum_{r=l}^n \sum_{k=l}^r a_k \cdot (1+\sum_{i=l}^r [a_i < a_k]) \\
&考虑一个数的贡献 \\
&= \sum_{k=1}^n \sum_{i=k+1}^n a_k \cdot [a_i < a_k] \cdot k \cdot (n-i+1)\\
&+ \sum_{k=1}^n \sum_{i=1}^{k-1} a_k \cdot [a_i < a_k] \cdot i \cdot (n-k+1) \\
&+ \sum_{k=1}^n a_k \cdot k \cdot (n-k+1)
\end{align}
\]
简单的二维偏序问题,树状数组搞一下就行了
注意数相等的情况!第二个二维偏序把相等认为是大于就行了
一定要考虑这种做题方法:
把一些最大值、最小值、k大值之类的关系用求和式子表示出来进行化简
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 1e6+5, mo = 1e9+7;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, a[N], mp[N]; ll A, B, C;
ll c[N];
inline void mod(ll &x) {if(x >= mo) x -= mo; else if(x < 0) x += mo;}
inline void add(int p, ll v) {for(; p<=n; p+=p&-p) mod(c[p] += v);}
inline ll sum(int p) {ll ans=0; for(; p; p-=p&-p) mod(ans += c[p]); return ans;}
void solve() {
ll ans = 0;
for(int k=n; k>=1; k--) mod(ans += (ll) mp[a[k]] * k %mo * sum(a[k]) %mo), add(a[k], (n-k+1));
memset(c, 0, sizeof(c));
for(int k=1; k<=n; k++) mod(ans += (ll) mp[a[k]] * (n-k+1) %mo * sum(a[k]-1) %mo), add(a[k], k);
for(int k=1; k<=n; k++) mod(ans += (ll) mp[a[k]] * k %mo * (n-k+1) %mo);
printf("%lld\n", (ans + mo) %mo);
}
int main() {
freopen("in", "r", stdin);
n=read(); a[1]=read(); A=read(); B=read(); C=read();
for(int i=2; i<=n; i++) a[i] = (a[i-1] * A + B) % C;
for(int i=1; i<=n; i++) mp[i] = a[i];
sort(mp+1, mp+1+n); mp[0] = unique(mp+1, mp+1+n) - mp - 1;
for(int i=1; i<=n; i++) a[i] = lower_bound(mp+1, mp+1+mp[0], a[i]) - mp;
solve();
}
D 区间求和 [数学 树状数组]的更多相关文章
- ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)
http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...
- hdu 1166 敌兵布阵——(区间和)树状数组/线段树
pid=1166">here:http://acm.hdu.edu.cn/showproblem.php?pid=1166 Input 第一行一个整数T.表示有T组数据. 每组数据第一 ...
- hdu-5700 区间交(二分+树状数组)
题目链接: 区间交 Problem Description 小A有一个含有n个非负整数的数列与mm个区间.每个区间可以表示为li,ri. 它想选择其中k个区间, 使得这些区间的交的那些 ...
- FZU2224 An exciting GCD problem 区间gcd预处理+树状数组
分析:(别人写的) 对于所有(l, r)区间,固定右区间,所有(li, r)一共最多只会有log个不同的gcd值, 可以nlogn预处理出所有不同的gcd区间,这样区间是nlogn个,然后对于询问离线 ...
- 牛客网暑期ACM多校训练营(第一场):J-Different Integers(分开区间不同数+树状数组)
链接:J-Different Integers 题意:给出序列a1, a2, ..., an和区间(l1, r1), (l2, r2), ..., (lq, rq),对每个区间求集合{a1, a2, ...
- SPOJ - DQUERY(区间不同数+树状数组)
链接:SPOJ - DQUERY 题意:求给定区间不同数的个数(不更新). 题解:离线+树状数组. 对所求的所有区间(l, r)根据r从小到大排序.从1-n依次遍历序列数组,在树状数组中不断更新a[i ...
- [CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)
题目描述 红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响. 选取显像管的任意一个平面,一开始平面内有个$n$电子,初始速度分别为$v_i$,定义飘升系数为$$\sum \li ...
- [CSP-S模拟测试]:Equation(数学+树状数组)
题目描述 有一棵$n$个点的以$1$为根的树,以及$n$个整数变量$x_i$.树上$i$的父亲是$f_i$,每条边$(i,f_i)$有一个权值$w_i$,表示一个方程$x_i+x_{f_i}=w_i$ ...
- 【XSY2714】大佬的难题 数学 树状数组
题目描述 给你三个排列\(A,B,C\),求 \[ \sum_{1\leq x,y\leq n}[a_x<a_y][b_x<b_y][c_x<c_y] \] \(n\leq 2\ti ...
随机推荐
- zlib1.2.11静态编译
1.进入官网http://zlib.net/,下载且解压zlib1211.zip: 2. 打开已解压的zlib-1.2.11目录,找到win32文件夹 3.将Makefile.msc复制到上一层,也就 ...
- js实现深拷贝和浅拷贝
浅拷贝: 思路----------把父对象的属性,全部拷贝给子对象,实现继承. 问题---------如果父对象的属性等于数组或另一个对象,那么实际上,子对象获得的只是一个内存地址,不会开辟新栈,不是 ...
- Vue下路由History mode导致页面无法渲染的原因
用 Vue.js + vue-router 创建单页应用,是非常简单的.使用 Vue.js ,我们已经可以通过组合组件来组成应用程序,当你要把 vue-router 添加进来,我们需要做的是,将组件( ...
- 你知道织梦后台安装插件时为什么会出现这个Character postion 686, 'item'&n
https://zhidao.baidu.com/question/589525064.html?qbl=relate_question_3&word=Tag Character postio ...
- dedecms_插件
../dede/adbaoming.php../dede/baoming_edit.php../dede/templets/baoming_main.htm
- 语句、变量等js最基本知识
JavaScript的最为基本知识 1语法 js是区分大小写的:标识符就是指变量.函数.属性的名字或者是参数,标识符可以是字母,下划线,美元符号,数字,注意第一个不能是数字:js采用的是驼峰大小格式: ...
- Visio绘制用例图问题集锦
1.Visio画UML用例图没有include关系的解决方法 发现Visio UML用例里面找不到include关系,即"箭头"+"<<include> ...
- Mysql Index extends优化
Innodb通过自动把主键列添加到每个二级索引来扩展它们: CREATE TABLE t1 ( i1 , i2 , d DATE DEFAULT NULL, PRIMARY KEY (i1, i2), ...
- html动态生成的代码,绑定事件
如果使用jQuery,你可以这样写: // .class为你绑定事件的动态生成的结点 $(document).on('click', '.class', function() { // 你要绑定的事件 ...
- string用法总结
要想使用标准C++中的string类,必须要包含#include <string> 注意是<string>而不是<string.h>,带.h的是C语言中的头文件 s ...