ID3算法Java实现
ID3算法java实现
1 ID3算法概述
1.1 信息熵
熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn)。那信息熵定义为:
通常以2为底数。所以信息熵的单位是bit。
1.2 决策树
决策树是以实例为基础的归纳学习算法。它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它採用自顶向下的递归方式。在决策树的内部结点进行属性值的比較,并依据不同的属性值从该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就相应着一条合取规则,整个决策树就相应着一组析取表达式规则。
1.3 ID3算法
ID3算法的核心是:在决策树各级结点上选择属性时,用信息增益(information gain)作为属性的选择标准,以使得在每个非叶结点进行測试时,能获得关于被測试记录最大的类别信息。其详细方法是:检測全部的属性,选择信息增益最大的属性产生决策树结点,由该属性的不同取值建立分支,再对各分支的子集递归调用该方法建立决策树结点的分支,直到全部子集仅包括同一类别的数据为止。
最后得到一棵决策树,它能够用来对新的样本进行分类。
2 取样实验
样本数据:
outlook |
temperature |
humidity |
windy |
play |
sunny |
hot |
high |
FALSE |
no |
sunny |
hot |
high |
TRUE |
no |
overcast |
hot |
high |
FALSE |
yes |
rainy |
mild |
high |
FALSE |
yes |
rainy |
cool |
normal |
FALSE |
yes |
rainy |
cool |
normal |
TRUE |
no |
overcast |
cool |
normal |
TRUE |
yes |
sunny |
mild |
high |
FALSE |
no |
sunny |
cool |
normal |
FALSE |
yes |
rainy |
mild |
normal |
FALSE |
yes |
sunny |
mild |
normal |
TRUE |
yes |
overcast |
mild |
high |
TRUE |
yes |
overcast |
hot |
normal |
FALSE |
yes |
rainy |
mild |
high |
TRUE |
No |
统计数据:(便于计算熵值)
outlook |
temperature |
humidity |
windy |
play |
|||||||||
yes |
no |
yes |
no |
yes |
no |
yes |
no |
yes |
no |
||||
sunny |
2 |
3 |
hot |
2 |
2 |
high |
3 |
4 |
FALSE |
6 |
2 |
9 |
5 |
overcast |
4 |
0 |
mild |
4 |
2 |
normal |
6 |
1 |
TRUR |
3 |
3 |
||
rainy |
3 |
2 |
cool |
3 |
1 |
2.1 Outlook为sunny时:
temperature |
humidity |
windy |
play |
hot |
high |
FALSE |
no |
hot |
high |
TRUE |
no |
mild |
high |
FALSE |
no |
cool |
normal |
FALSE |
yes |
mild |
normal |
TRUE |
yes |
temperature |
humidity |
windy |
play |
|||||||
yes |
no |
yes |
no |
yes |
no |
yes |
no |
|||
hot |
0 |
2 |
high |
0 |
3 |
FALSE |
1 |
2 |
2 |
3 |
mild |
1 |
1 |
normal |
2 |
0 |
TRUR |
1 |
1 |
||
cool |
1 |
0 |
2.1.1 humidity为high时:
temperature |
windy |
play |
hot |
FALSE |
no |
hot |
TRUE |
no |
mild |
FALSE |
no |
另外一种情况,所以的样本都属于同一类别,用相应的类别属性no来标记
2.1.2 humidity为normal时:
temperature |
windy |
play |
cool |
FALSE |
yes |
mild |
TRUE |
yes |
另外一种情况,所以的样本都属于同一类别。用相应的类别属性yes来标记
2.2 Outlook为overcast时:
temperature |
humidity |
windy |
play |
hot |
high |
FALSE |
yes |
cool |
normal |
TRUE |
yes |
mild |
high |
TRUE |
yes |
hot |
normal |
FALSE |
yes |
另外一种情况。所以的样本都属于同一类别,用相应的类别属性yes来标记
2.3 Outlook为rainy时:
temperature |
humidity |
windy |
play |
mild |
high |
FALSE |
yes |
cool |
normal |
FALSE |
yes |
cool |
normal |
TRUE |
no |
mild |
normal |
FALSE |
yes |
mild |
high |
TRUE |
no |
temperature |
humidity |
windy |
play |
|||||||
yes |
no |
yes |
no |
yes |
no |
yes |
no |
|||
mild |
2 |
1 |
high |
1 |
1 |
FALSE |
3 |
0 |
3 |
2 |
cool |
1 |
1 |
normal |
2 |
1 |
TRUR |
0 |
2 |
2.3.1 temperature为milk时:
humidity |
windy |
play |
high |
FALSE |
yes |
normal |
FALSE |
yes |
high |
TRUE |
no |
humidity |
windy |
play |
|||||
yes |
no |
yes |
no |
yes |
no |
||
high |
1 |
1 |
FALSE |
2 |
0 |
2 |
1 |
normal |
1 |
0 |
TRUR |
0 |
1 |
2.3.1.1 windy为false时:
humidity |
play |
high |
yes |
normal |
yes |
另外一种情况,所以的样本都属于同一类别。用相应的类别属性yes来标记
2.3.1.2 windy为true时:
humidity |
play |
high |
no |
另外一种情况。所以的样本都属于同一类别,用相应的类别属性no来标记
2.3.2 temperature为cool时:
temperature |
humidity |
windy |
play |
cool |
normal |
FALSE |
yes |
cool |
normal |
TRUE |
yes |
另外一种情况,所以的样本都属于同一类别,用相应的类别属性yes来标记
经计算得到的决策树:
3 ID3算法Java实现
ID3算法实现包含四个类的设计:
一、 决策树节点类(TreeNode类),包含类属性:name(节点属性名称)。rule(节点属性值域,也就是相应决策树的分裂规则),child(节点下的孩子节点)。datas(当前决策下相应的样本元组), candidateAttr(当前决策下剩余的分类属性)。
二、 最大信息增益节点计算类(Gain类):包含属性值:D(当前决策层次下的样本数据),attrList(当前决策层次下的剩余分类属性);包含方法:统计属性取值方法,统计属性不同取值计数方法,计算先验熵和条件熵的方法。筛选指定属性索引在指定值上的样本元组方法。通过先验熵减后验熵计算出最大信息增益值属性的方法。详细方法在程序中都已经凝视。在这里仅仅是依据需求给出方法的大致功能。
三、决策树建立类(DecisionTree类):包含方法:计算当前样本中分类属性的取值及其计数,并由此计算出多数类,决策树节点递归构建构成,详细实现思想同课上讲授内容。在此不在重述,借助的类是增益值计算类。
四、 ID3算法測试类(TestDecisionTree类):借助于上面决策树建立类,决策树节点之间连接已经建立完成。以下将以上第二部分的样本数据作为測试数据,而且实现递归打印方法,输出决策树详细内容。
ID3算法Java实现的更多相关文章
- 决策树ID3算法的java实现(基本试用所有的ID3)
已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...
- 决策树ID3算法的java实现
决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分.比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳 ...
- ID3算法(Java实现)
数据存储文件:buycomputer.properties #数据个数 datanum=14 #属性及属性值 nodeAndAttribute=年龄:青/中/老,收入:高/中/低,学生:是/否,信誉: ...
- 决策树ID3算法的java实现(基本适用所有的ID3)
已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...
- 机器学习笔记----- ID3算法的python实战
本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...
- 归纳决策树ID3(Java实现)
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play).如果给出新一天的气象指标数据:sunny,c ...
- ID3算法(决策树)
一,预备知识: 信息量: 单个类别的信息熵: 条件信息量: 单个类别的条件熵: 信息增益: 信息熵: 条件熵:(表示分类的类,表示属性V的取值,m为属性V的取值个数,n为分类的个数) 二.算法流程: ...
- 归并排序算法 java 实现
归并排序算法 java 实现 可视化对比十多种排序算法(C#版) [直观学习排序算法] 视觉直观感受若干常用排序算法 算法概念 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Di ...
- 快速排序算法 java 实现
快速排序算法 java 实现 快速排序算法Java实现 白话经典算法系列之六 快速排序 快速搞定 各种排序算法的分析及java实现 算法概念 快速排序是C.R.A.Hoare于1962年提出的一种划分 ...
随机推荐
- 习题:Wormhole(思路题)
tyvj1763 描述 一维的世界就是一个数轴.这个世界的狭小我们几乎无法想象.在这个数轴上,有N个点.从左到右依次标记为点1到N.第i个点的坐标为Xi.经过漫长时间的物理变化和化学变化,这个一维世界 ...
- Python爬虫教程-21-xpath
本篇简单介绍 xpath 在python爬虫方面的使用,想要具体学习 xpath 可以到 w3school 查看 xpath 文档 Python爬虫教程-21-xpath 什么是 XPath? XPa ...
- KM算法【带权二分图完美匹配】
先orz litble--KM算法 为什么要用KM算法 因为有的题丧心病狂卡费用流 KM算法相比于费用流来说,具有更高的效率. 算法流程 我们给每一个点设一个期望值[可行顶标] 对于左边的点来说,就是 ...
- Linux PC开发环境搭建建议
搭建Linux PC开发环境 很早之前整理的在Linux(ubuntu)系统下搭建 PC开发环境的工具的推荐和简单说明,尽管现在有些已经不再使用,但还是要备份一下,作为以后的参考: package: ...
- JavaScript内存分配
1.栈内存和堆内存 栈内存为自动分配的内存空间,由系统自动释放堆内存是动态分配的内存,大小不固定,也不会自动释放 js的值类型直接分配在栈内存中,引用类型分配在堆内存中引用类型变量保存的是引用类型的指 ...
- VMware Esxi5.5中嵌套虚拟机的网络设置方法
环境: Esxi5.5服务器->虚拟机(WinServer2008R2)->VMware WorkStation(Win7虚拟机) 网络问题: VMware WorkStation中的虚拟 ...
- dedeCMS php标签使用说明和数据库查询说明
1.{dede:php}标签想要输出信息 可以直接使用printf , echo,var_dump 之类的打印出来 赋值给@me 无效 2.结合sql语句使用方法 例:{dede:php} $ro ...
- duilib入门简明教程 -- VS环境配置(2) (转)
原文转自:http://www.cnblogs.com/Alberl/p/3342030.html 既然是入门教程,那当然得基础点,因为搜索duilib相关资料时,发现有些小伙伴到处都是编译错 ...
- Error-invalid project description(转)
导入android工程时有时会出现下面错误: 按照提示,说是当前的工作空间内已经有同名的工程了,但实际是没有的. 多次碰到这种问题后,无意间找到解决办法.导入工程时,不要选择Android,而是选择G ...
- 学习good taste代码
Linux 的创始人,在采访中提及了关于代码的 “good taste”.Linus Torvalds 展示了一一些代码: void remove_list_entry(entry){ prev = ...