Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html
A Hilbert space is a vector space
with an inner product
such that the norm defined by
![]() |
turns
into a complete metric space. If the metric defined by the norm is not complete, then
is instead known as an inner product space.
Examples of finite-dimensional Hilbert spaces include
1. The real numbers
with
the vector dot product of
and
.
2. The complex numbers
with
the vector dot product of
and the complex conjugate of
.
An example of an infinite-dimensional Hilbert space is
, the set of all functions
such that the integral of
over the whole real line is finite. In this case, the inner product is
![]() |
A Hilbert space is always a Banach space, but the converse need not hold.
A (small) joke told in the hallways of MIT ran, "Do you know Hilbert? No? Then what are you doing in his space?" (S. A. Vaughn, pers. comm., Jul. 31, 2005).
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf

zh.wikipedia.org/wiki/希尔伯特空间
在数学里,希尔伯特空间即完备的内积空间,也就是说一个带有内积的完备向量空间。是有限维欧几里得空间的一个推广,使之不局限于实数的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列会收敛到此空间里的一点,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公设化数学和量子力学的关键性概念之一。
en.wikipedia.org/wiki/Hilbert_space
The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer)—and ergodic theory, which forms the mathematical underpinning of thermodynamics. John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functions, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions.
Cauchy sequence Hilbert space 希尔波特空间的柯西序列的更多相关文章
- 希尔伯特空间(Hilbert Space)
欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...
- Hilbert space
Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- sed高级用法:模式空间(pattern space)和保持空间(hold space)
摘自:https://blog.csdn.net/ITsenlin/article/details/21129405 sed高级用法:模式空间(pattern space)和保持空间(hold spa ...
- 希尔伯特空间(Hilbert Space)是什么?
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...
- Exception in thread "main" java.lang.OutOfMemoryError: Java heap space(Java堆空间内存溢出)解决方法
http://hi.baidu.com/619195553dream/blog/item/be9f12adc1b5a3e71f17a2e9.html问题描述Exception in thread &q ...
- Green Space【绿色空间】
Green Space Living in an urban area with green spaces has a long-lasting positive impact on people's ...
- Space Syntax(空间句法)
01 December 2019 13:16 https://spacesyntax.com/ 相关软件:Depthmap 空间句法理论作为一种新的描述建筑和城市空间模式的语言 ...
- Reproducing Kernel Hilbert Space (RKHS)
目录 概 主要内容 RKHS-wiki 概 这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了. 主要内容 首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质. Hi ...
随机推荐
- Java原子操作类,你知道多少?
原子操作类简介 由于synchronized是采用的是悲观锁策略,并不是特别高效的一种解决方案. 实际上,在J.U.C下的atomic包提供了一系列的操作简单,性能高效,并能保证线程安全的类去 更新基 ...
- linux查看hostname以及修改hostname
查看hostname : hostname 修改hostname : hostnamectl set-hostname master (比如要修改为master) 修改完重启生效 : ...
- SecureCRT保持连接,不会过一段时间关闭Session
[Options]->[Global Options]->[General]->[Default Session]点击[Edit default settings]按钮,在[Term ...
- Java中的文件上传(原始Servlet实现)
从原始的Servlet来实现文件的上传,代码如下: 参考:https://my.oschina.net/Barudisshu/blog/150026 采用的是Multipart/form-data的方 ...
- windows线程yield以及Sleep(0)和SwitchToThread之间的区别
C++的自定义线程函数内调用了一个自定义的yield()接口. 在windows上是调用了SwitchToThread来实现的,linux是pthread_yield实现的. Sleep(0):时间片 ...
- mysql日常运维与参数调优
日常运维 DBA运维工作 日常 导数据,数据修改,表结构变更 加权限,问题处理 其它 数据库选型部署,设计,监控,备份,优化等 日常运维工作: 导数据及注意事项 数据修改及注意事项 表结构变更及注意事 ...
- Ajax 控件列表名称简介
ylbtech-ASP.NET AJAX: Ajax 控件列表名称简介 1.A,返回顶部 1) Accordion 可折叠的 2) AlwaysVisibleControl 始终可见控制 3) A ...
- Drools学习笔记
Drools是一款基于Java的开源规则引擎 实现了将业务决策从应用程序中分离出来. 优点: 1.简化系统架构,优化应用 2.提高系统的可维护性和维护成本 3.方便系统的整合 4.减少编写“硬代码”业 ...
- hdu 3392(滚动数组优化dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3392 Pie Time Limit: 6000/3000 MS (Java/Others) Me ...
- 【设计模式】工厂方法(FactoryMethod)模式
看不见PPT的请自行解决DNS污染问题. 相关类的代码: namespace FactoryPatternConsole.Model { public class Address { public s ...

