第一道莫比乌斯反演。。。$qwq$


设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$

$F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$

$f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$

$ans=\sum_{p\in pri}f(p)$

$=\sum_{p\in pri}\sum_{p|d}\mu(\frac{d}{p})F(d)$

$=\sum_{d=1}^{min(N,M)}\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})F(d)$

$=\sum_{d=1}^{min(N,M)}F(d)\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$

$=\sum_{d=1}^{min(N,M)}\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor \sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$

对于$\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$用整除分块,对于$a(d)=\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$用一个类似埃筛的思路把$a(d)$筛出来然后做一个前缀和。。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register int
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
int t,n,m,cnt,pri[],a[],mu[];
bool v[]; long long sum[];
inline void MU(int n) { mu[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) break;
else mu[i*pri[j]]=-mu[i];
}
} for(R j=;j<=cnt;++j) for(R i=;i*pri[j]<=n;++i) a[i*pri[j]]+=mu[i];
for(R i=;i<=n;++i) sum[i]=sum[i-]+(ll)a[i];
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
MU(); t=g(); while(t--) { register long long ans=;
n=g(),m=g(); n>m?(void)(swap(n,m)):(void);
for(R l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=(ll)(n/l)*(m/l)*(sum[r]-sum[l-]);
}printf("%lld\n",ans);
}
}

2019.06.09

Luogu P2257 YY的GCD 莫比乌斯反演的更多相关文章

  1. [Luogu P2257] YY的GCD (莫比乌斯函数)

    题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...

  2. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  3. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

  4. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  5. P2257 YY的GCD (莫比乌斯反演)

    题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...

  6. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  7. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  8. Luogu P2257 YY的GCD

    莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我 ...

  9. 【题解】Luogu P2257 YY的GCD

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 显然题目的答案就是\[ Ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=prime]\] 我们先设设F(n)表示满足\ ...

随机推荐

  1. Java多线程编程核心 - 对象及变量的并发访问

    1.什么是“线程安全”与“非线程安全”? “非线程安全”会在多个线程对同一对象总的实例变量进行并发访问时发生,产生的后果是“脏读”,也就是取到的数据其实是被更改过的. “线程安全”是以获得的实例变量的 ...

  2. html5基本格式

    html5基本格式 学习要点: HTML5 文档的基本格式 2. 开发工具的基本操作 一.  文档基本格式 <!DOCTYPE  html>  文档声明,告诉计算机这是一个HTML5文档. ...

  3. 分享知识-快乐自己:Oracle基本语法(创建:表空间、用户、授权、约束等)使用指南

    Oracle12c 与 Oracle11g 创建用户时有差别.Oracle12C默认为 CDB模式 这时创建用户的时候需要加上 c## 开头:例如:c##MLQ. --说明--需求:创建表空间(MLQ ...

  4. Linux_服务器_02_在linux上怎么看eclipse控制台输出语句

    在windows下,tomcat启动之后有一个黑窗口,很容易看到System.out.println或ex.printStackTrace这样的函数输出,非常方便调试,但是在linux下,没有这样的窗 ...

  5. listen 62

    The Hangover I'm never drinking again. And this time I mean it! Anyone who's suffered through a bad ...

  6. leetcode 111 Minimum Depth of Binary Tree(DFS)

    Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...

  7. QT(2)项目文件介绍

    一.项目创建 二.文件说明 三.QT模块

  8. Python 静态方法和类方法的区别

    python staticmethod and classmethod Though classmethod and staticmethod are quite similar, there’s a ...

  9. Java Security(JCE基本概念)

    Java Security网络环境中的安全隐患计算机安全OSI参考结构模型五类安全服务八类安全机制网络环境中的安全隐患1. 存储问题: 移动存储设备存储数据没有加密存在的安全隐患 2. 通信问题: 用 ...

  10. CentOS虚拟机通过主机网络上网

    0 环境简介 环境如下: (1)宿主机为WIN7系统,连接内网,同时通过网关服务器上外网: (2)虚拟机为VMWare12下的CentOS7系统. 宿主机通过WIFI方式上外网的配置方法,参考本人另一 ...