Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演。。。$qwq$
设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$
$F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$
$f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$
$ans=\sum_{p\in pri}f(p)$
$=\sum_{p\in pri}\sum_{p|d}\mu(\frac{d}{p})F(d)$
$=\sum_{d=1}^{min(N,M)}\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})F(d)$
$=\sum_{d=1}^{min(N,M)}F(d)\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$
$=\sum_{d=1}^{min(N,M)}\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor \sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$
对于$\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$用整除分块,对于$a(d)=\sum_{p\in pri且p|d}\space\mu(\frac{d}{p})$用一个类似埃筛的思路把$a(d)$筛出来然后做一个前缀和。。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register int
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
int t,n,m,cnt,pri[],a[],mu[];
bool v[]; long long sum[];
inline void MU(int n) { mu[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) break;
else mu[i*pri[j]]=-mu[i];
}
} for(R j=;j<=cnt;++j) for(R i=;i*pri[j]<=n;++i) a[i*pri[j]]+=mu[i];
for(R i=;i<=n;++i) sum[i]=sum[i-]+(ll)a[i];
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
MU(); t=g(); while(t--) { register long long ans=;
n=g(),m=g(); n>m?(void)(swap(n,m)):(void);
for(R l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=(ll)(n/l)*(m/l)*(sum[r]-sum[l-]);
}printf("%lld\n",ans);
}
}
2019.06.09
Luogu P2257 YY的GCD 莫比乌斯反演的更多相关文章
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- P2257 YY的GCD (莫比乌斯反演)
题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- Luogu P2257 YY的GCD
莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我 ...
- 【题解】Luogu P2257 YY的GCD
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 显然题目的答案就是\[ Ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=prime]\] 我们先设设F(n)表示满足\ ...
随机推荐
- 最短路径问题----Dijkstra算法的解释
先上图: 现在要找到地点V1到其余各个地点的最短路径(图中数字的单位默认为km.).有一个原则是:永远找最小,确保无更小. 第一步:v1->v1,v1->v2,...v1->v7的距 ...
- BZOJ 2019 [Usaco2009 Nov]找工作:spfa【最长路】【判正环】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2019 题意: 奶牛们没钱了,正在找工作.农夫约翰知道后,希望奶牛们四处转转,碰碰运气. 而 ...
- linux 进程学习笔记-消息队列messagequeue
可以想象,如果两个进程都可以访问同一个队列:其中一个进程(sender)向其中写入结构化数据,另外一个进程(receiver)再从其中把结构化的数据读取出来.那么这两个进程就是在利用这个队列进行通信了 ...
- Java 的序列化Serializable接口介绍及应用
常看到类中有一串很长的 如 private static final long serialVersionUID = -4667619549931154146L;的数字声明.这些其实是对此类进行序列化 ...
- ACM学习历程—BestCoder 2015百度之星资格赛1001 大搬家(递推 && 组合数学)
Problem Description 近期B厂组织了一次大搬家,所有人都要按照指示换到指定的座位上.指示的内容是坐在位置i 上的人要搬到位置j 上.现在B厂有N 个人,一对一到N 个位置上.搬家之后 ...
- vue之axios请求数据本地json
写给自己的话:静态的json文件要记得放在static文件夹下,想打自己 1.下载插件 npm install axios --save 2.在main.js下引用axios import axios ...
- docker的操作
查询容器 docker ps 只能查询到正在运行的docker镜像: 如果添加上-a的选项,则会显示所有的(包括已经exit,未启动)的容器 基于一个镜像来构建(run)容器,并启动 docker ...
- win 10 无线标志都不出现
http://jingyan.baidu.com/article/e75057f2fdd2f1ebc91a89f1.html ipconfig /flushdns netsh winsock rese ...
- sqlServer对内存的管理
简介 理解SQL Server对于内存的管理是对于SQL Server问题处理和性能调优的基本,本篇文章讲述SQL Server对于内存管理的内存原理. 二级存储(secondary storage) ...
- STM in Clojure
Transactional memory in Clojure is implemented using Multiversion Concurrency Control protocol http: ...