Portal

Description

给出\(n(n\leq10^5)\)个任务,和总时间范围\(m(m\leq10^5)\)。每个任务有开始/结束时间\(s_i,e_i(1\leq s_i \leq e_i \leq m)\)和优先级\(p_i(p_i\leq10^9)\)。接下来\(m\)个询问,每次询问在时刻\(t_i\)时优先级前\(k\)大的任务的优先级之和,若\(k\)大于此时正在进行的任务总数则输出此时优先级之和。其中\(\{t_m\}\)是\(1..m\)的一个排列。

Solution

可持久化线段树。

将优先级\(p\)离散化,然后对于每个时刻建立线段树,记录此时正在进行的任务情况,线段树上第\(i\)个位置记录优先级为\(i\)的任务个数。在线段树上同时维护区间任务个数和区间优先级之和即可完成询问。

时间复杂度\(O(nlogn)\)。

Code

//「CQOI2015」任务查询系统
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
const int N=2e5+10;
int n,m;
struct optn{int opt,t,x;} seq[N];
bool cmpT(optn a,optn b) {return a.t<b.t;}
int n0,map[N];
void discrete()
{
for(int i=1;i<=n+n;i++) map[i]=seq[i].x;
sort(map+1,map+n+n+1); n0=unique(map+1,map+n+n+1)-map-1;
for(int i=1;i<=n+n;i++) seq[i].x=lower_bound(map+1,map+n0+1,seq[i].x)-map;
}
const int N1=22*N;
int ndCnt,rt[N],ch[N1][2],cnt[N1] ;lint sum[N1];
void update(int p) {cnt[p]=cnt[ch[p][0]]+cnt[ch[p][1]],sum[p]=sum[ch[p][0]]+sum[ch[p][1]];}
void ndCopy(int p,int q) {ch[q][0]=ch[p][0],ch[q][1]=ch[p][1],cnt[q]=cnt[p],sum[q]=sum[p];}
void ins(int &p,int L0,int R0,int x,int v)
{
ndCopy(p,++ndCnt); p=ndCnt;
if(L0==R0) {cnt[p]+=v,sum[p]+=v*map[L0]; return;}
int mid=L0+R0>>1;
if(x<=mid) ins(ch[p][0],L0,mid,x,v);
else ins(ch[p][1],mid+1,R0,x,v);
update(p);
}
lint query(int p,int L0,int R0,int k)
{
if(L0==R0) return 1LL*k*map[L0];
if(cnt[p]<=k) return sum[p];
int mid=L0+R0>>1;
if(cnt[ch[p][0]]>=k) return query(ch[p][0],L0,mid,k);
else return sum[ch[p][0]]+query(ch[p][1],mid+1,R0,k-cnt[ch[p][0]]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
{
int t1=read(),t2=read(),x=read();
int i2=i<<1,i1=i2-1;
seq[i1].opt=1,seq[i1].t=t1,seq[i1].x=x;
seq[i2].opt=-1,seq[i2].t=t2+1,seq[i2].x=x;
}
discrete();
sort(seq+1,seq+n+n+1,cmpT);
for(int i=1,k=1;i<=1e5+10;i++)
{
rt[i]=rt[i-1];
for(k;seq[k].t==i;k++) ins(rt[i],1,n0,seq[k].x,seq[k].opt);
}
lint pre=1;
for(int i=1;i<=m;i++)
{
int t=read(); lint a=read(),b=read(),c=read();
pre=query(rt[t],1,n0,1+(a*pre+b)%c);
printf("%lld\n",pre);
}
return 0;
}

LibreOJ2097 - 「CQOI2015」任务查询系统的更多相关文章

  1. 「CQOI2015」任务查询系统

    「CQOI2015」任务查询系统 传送门 好像也是板子题??? 区间修改,单点查询,考虑差分. 然后每次查询时就直接在对应的主席树上二分即可. 参考代码: #include <cstdio> ...

  2. LibreOJ2095 - 「CQOI2015」选数

    Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\ ...

  3. 「CQOI2015」选数

    「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都 ...

  4. 【LOJ】#2098. 「CQOI2015」多项式

    题解 令x = x - t代换一下会发现 \(\sum_{i = 0}^{n}a_i (x + t)^i = \sum_{i = 0}^{n} b_{i} x^{i}\) 剩下的就需要写高精度爆算了- ...

  5. Linux 小知识翻译 - 「LDAP」

    这次聊聊「LDAP」. LDAP是「Lightweight Directory Access Protocol」的所有,从名字上可以看出是协议的一种. LDAP是访问数据库(层次型数据库)的组件.管理 ...

  6. BZOJ_3932_[CQOI2015]任务查询系统_主席树

    BZOJ_3932_[CQOI2015]任务查询系统_主席树 题意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,P ...

  7. BZOJ3932: [CQOI2015]任务查询系统 主席树

    3932: [CQOI2015]任务查询系统 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4869  Solved: 1652[Submit][St ...

  8. P3168 [CQOI2015]任务查询系统

    题目地址:P3168 [CQOI2015]任务查询系统 主席树的模板题 更模板的在这儿:P3834 [模板]可持久化线段树 1(主席树) 形象的说,P3834是"单点修改,区间查询" ...

  9. 主席树||可持久化线段树||离散化||[CQOI2015]任务查询系统||BZOJ 3932||Luogu P3168

    题目: [CQOI2015]任务查询系统 题解: 是一道很经典的题目.大体思路是抓优先级来当下标做主席树,用时刻作为主席树的版本.然而优先级范围到1e7去了,就离散化一遍.然后把每个事件的开始(s). ...

随机推荐

  1. 八数码问题(一) 暴力BFS + STL

    八数码问题是一个经典的人工智能问题.具体问题不累述了. 思路:由于存在多组测试数据,可以考虑“打表法“.所谓打表法,即枚举所有的初始情况,记录其到达终点的路径.而在这个题目中,顺序打表会调用很多次BF ...

  2. CentOS安装RabbitMQ步骤

    1.安装gcc yum install gcc 安装 ncurses-devel yum install ncurses-devel 2.安装erlang 下载安装包 http://www.erlan ...

  3. 用 label 控制 Pod 的位置

    默认配置下,Scheduler 会将 Pod 调度到所有可用的 Node.不过有些情况我们希望将 Pod 部署到指定的 Node,比如将有大量磁盘 I/O 的 Pod 部署到配置了 SSD 的 Nod ...

  4. JavaScript onkeydown事件入门实例(键盘某个按键被按下)

    JavaScript onkeydown 事件 用户按下一个键盘按键时会触发 onkeydown 事件.与 onkeypress事件不同的是,onkeydown 事件是响应任意键按下的处理(包括功能键 ...

  5. ovs的学习

    本来编辑好了的, 结果忘了保存, 坑爹,直接把人家的网址贴上来吧 http://blog.chinaunix.net/uid-20737871-id-4333314.html 昨天遇到一个问题(虚拟机 ...

  6. 01_10_SERVLET如何连接Mysql数据库

    01_10_SERVLET如何连接Mysql数据库 1. 实现类 public void doGet(HttpServletRequest request, HttpServletResponse r ...

  7. console.log与console.dir的区别

    今天学习promise的时候看到了console.dir这个方法,感到很好奇,查了以下感觉又长知识了 在Chrome中,控制台对象定义了两个似乎做同样事情的方法: console.log() cons ...

  8. 【android】android对位图文件的支持

    Android 支持以下三种格式的位图文件:.png(首选)..jpg(可接受)..gif(不建议).

  9. java 的多态(2013-10-11-163 写的日志迁移

    java 的多态性:(所谓多态--就是指一个引用(类型)在不同情况下的多种状态)   1.方法的多态:    重载(overload)   重写(覆盖 override)   2.对象的多态性:(本人 ...

  10. Linux安装OpenCV

    sudo apt-get update sudo apt-get install git git clone https://github.com/jayrambhia/Install-OpenCV ...